This paper presents a data-driven model to predict magnetorheological (MR) grease composition as a function of its rheological properties using several machine learning methods. The methods are Single Hidden Layer Feedforward Neural Networks (SLFNs) and Kernel Based-Extreme Learning Ma-chine (KELM). The approach provides high accuracy prediction and the easiness of changing the inputs or outputs as long as the data is available. While the model output is carbonyl iron particles weight percentage, the model in-puts are the slope of the magnetic field density-dependent-yield stress change over the magnetic fields and the off-state yield stress. The kernel functions are varied from radial basis function, wavelet, linear, and polynomial functions. The simulation results of KELM show that R-squared values are more than 90% for both training and testing data. The root mean square errors also show relatively small values. With a relatively lower number of parameters than SLFNs-ELM, KELM can show comparable performance with SLFNs-ELM and Back Propagation neural networks.

1.
H.
Sahin
,
X.
Wang
, and
F.
Gordaninejad
,
J. Intell. Mater. Syst. Struct
.
20
,
2215
(
2009
).
2.
H.
Wang
,
Y.
Li
,
G.
Zhang
, and
J.
Wang
,
Smart Mater. Struct
.
28
,
035002
(
2019
).
3.
N.
Mohamad
,
S.A.
Mazlan
,
Ubaidillah
,
S.B.
Choi
,
F.
Imaduddin
, and
S.A.
Abdul Aziz
,
J. Intell. Mater. Syst. Struct
.
30
,
788
(
2019
).
4.
N.
Mohamad
,
Ubaidillah
,
S.A.
Mazlan
,
F.
Imaduddin
,
S.-B.
Choi
, and
I.I.M.
Yazid
,
PLoS One
13
,
e0191795
(
2018
).
5.
J.
Dai
,
H.
Chang
,
R.
Zhao
,
J.
Huang
,
K.
Li
, and
S.
Xie
,
Mech. Syst. Signal Process
.
116
,
741
(
2019
).
6.
V.K.
Sukhwani
and
H.
Hirani
,
Tribol. Online
3
,
31
(
2008
).
7.
R.
Ahamed
,
S.B.
Choi
, and
M.M.
Ferdaus
,
J. Intell. Mater. Syst. Struct
.
29
,
2051
(
2018
).
8.
B.M.
Kavlicoglu
,
F.
Gordaninejad
, and
X.
Wang
,
Smart Mater. Struct
.
22
,
125030
(
2013
).
9.
A.
Singh
,
M. Kumar
Thakur
, and
C.
Sarkar
,
Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl
.
234
,
1252
(
2020
).
10.
K.
Wang
,
X.
Dong
,
J.
Li
, and
K.
Shi
,
Results Phys
.
18
,
103328
(
2020
).
11.
N.
Mohamad
,
Ubaidillah
,
S.A.
Mazlan
,
S.B.
Choi
,
S.A.A.
Aziz
, and
M.
Sugimoto
,
Int. J. Mol. Sci
.
20
, (
2019
).
12.
J.E.
Kim
,
J.-D. Do
Ko
,
Y.D.
Liu
,
I.G.
Kim
, and
H.J.
Choi
,
IEEE Trans. Magn
.
48
,
3442
(
2012
).
13.
J.H.
Park
,
M.H.
Kwon
, and
O.O.
Park
,
Korean J. Chem. Eng
.
18
,
580
(
2001
).
14.
N.A.
Mohd Nasir
,
N.
Nazmi
,
N.
Mohamad
,
U.
Ubaidillah
,
N.A.
Nordin
,
S.A.
Mazlan
,
S.A.
Abdul Aziz
,
M.K.
Shabdin
, and
N.A.
Yunus
,
Materials (Basel)
.
14
,
1
(
2021
).
15.
I.
Bahiuddin
,
N.A.
Wahab
,
M.I.
Shapiai
,
S.A.
Mazlan
,
N.
Mohamad
,
F.
Imaduddin
, and
Ubaidillah
,
J. Intell. Mater. Syst. Struct
.
30
,
1727
(
2019
).
16.
H.
Wang
,
T.
Chang
,
Y.
Li
,
S.
Li
,
G.
Zhang
,
J.
Wang
, and
J.
Li
,
J. Intell. Mater. Syst. Struct
.
32
,
614
(
2021
).
17.
W.
Zheng
,
Y.
Liu
,
Z.
Gao
, and
J.
Yang
,
Chemom. Intell. Lab. Syst
.
180
,
36
(
2018
).
18.
I.
Bahiuddin
,
S.A.
Mazlan
,
M.I.
Shapiai
,
S.-B.
Choi
,
F.
Imaduddin
,
M.A.A.
Rahman
, and
M.H.M.
Ariff
,
Sensors Actuators A Phys
.
281
,
209
(
2018
).
19.
I.
Bahiuddin
,
S.A.
Mazlan
,
M.I.
Shapiai
,
F.
Imaduddin
, and
Ubaidillah
, in
2017 Int. Conf. Robot. Autom. Sci
.
(IEEE
,
2017
), pp.
1
5
.
20.
K.D.
Saharuddin
,
M.H.
Mohammed Ariff
,
I.
Bahiuddin
,
S.A.
Mazlan
,
S.A.
Abdul Aziz
,
N.
Nazmi
,
A.Y.
Abdul Fatah
, and
K.
Mohmad
,
Smart Mater. Struct
.
29
,
087001
(
2020
).
21.
G.
Pirge
,
A.
Hacioglu
,
M.
Ermis
, and
S.
Altintas
,
Comput. Mater. Sci
.
45
,
189
(
2009
).
22.
S.
Dolenko
,
A.
Efitorov
,
S.
Burikov
,
T.
Dolenko
,
K.
Laptinskiy
, and
I.
Persiantsev
, in (
2015
), pp.
109
118
.
23.
Guang-Bin
Huang
,
Hongming
Zhou
,
Xiaojian
Ding
, and
Rui
Zhang
,
IEEE Trans. Syst. Man, Cybern. Part B
42
,
513
(
2012
).
24.
G.
Huang
,
Hands-on Work. Mach. Learn. Biomed. Informatics
2006 (
2006
).
25.
H.R.
Ansari
,
M.J.
Zarei
,
S.
Sabbaghi
, and
P.
Keshavarz
,
Int. Commun. Heat Mass Transf
.
91
,
158
(
2018
).
26.
K.
Golzar
,
H.
Modarress
, and
S.
Amjad-Iranagh
,
Int. J. Greenh. Gas Control
53
,
187
(
2016
).
27.
T.
Dumitriu
,
R.P.
Dumitriu
, and
C.
Cimpanu
, in
2017 21st Int. Conf. Syst. Theory, Control Comput
.
(IEEE
,
2017
), pp.
624
628
.
28.
K.
Chhantyal
,
H.
Viumdal
,
S.
Mylvaganam
, and
G.
Elseth
, in
2016 IEEE Sensors Appl. Symp
.
(IEEE
,
2016
), pp.
1
6
.
29.
I.
Bahiuddin
,
F.
Imaduddin
,
S.A.
Mazlan
,
M.I.
Shapiai
,
Ubaidillah
,
N.
Nazmi
, and
N.
Mohamad
,
Smart Mater. Struct
.
30
,
105013
(
2021
).
30.
A.P.
Kale
and
S.P.
Sonavane
,
Comput. Electron. Agric
.
161
,
225
(
2018
).
31.
Guang-Bin
Huang
and
Chee-Kheong
Siew, ICARCV 2004 8th Control. Autom. Robot. Vis. Conf
. 2004.
2
,
1029
(
2004
).
32.
L.
Zheng
,
Y.
Xiang
, and
C.
Sheng
,
J. Brazilian Soc. Mech. Sci. Eng
.
41
,
1
(
2019
).
33.
N.
Zhang
,
S.
Ding
, and
J.
Zhang
,
Appl. Soft Comput. J
.
43
,
535
(
2016
).
34.
W.
Huang
,
N.
Li
,
Z.
Lin
,
G.
Bin Huang
,
W.
Zong
,
J.
Zhou
, and
Y.
Duan
,
Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS
3662
(
2013
).
35.
N.
Mohamad
,
S.A.
Mazlan
,
Ubaidillah
,
S.-B.
Choi
, and
M.F.M.M.
Nordin
,
Smart Mater. Struct
.
25
,
095043
(
2016
).
36.
I.
Bahiuddin
,
M.I.
Shapiai
,
S.A.
Mazlan
,
F.
Imaduddin
, and
U.
Ubaidillah
, in
ICORAS 2017
(
2017
).
37.
I.
Bahiuddin
,
F.
Imaduddin
,
S.A.
Mazlan
,
M.H.M.
Ariff
,
K.B.
Mohmad
,
Ubaidillah
, and
S.B.
Choi
,
Sensors Actuators, A Phys
.
318
,
112479
(
2021
).
38.
Q.
Tong
,
J.
Cao
,
B.
Han
,
X.
Zhang
,
Z.
Nie
,
J.
Wang
,
Y.
Lin
, and
W.
Zhang
,
IEEE Access
5
,
5515
(
2017
).
This content is only available via PDF.
You do not currently have access to this content.