Electric vehicles are environmentally friendly vehicles because they do not produce exhaust gas or carbon emissions. Of the several types of batteries, lithium-ion is a type of battery that is generally used in electric vehicles. When an electric vehicle operates, the battery will produce heat, when the battery temperature is high, this can result in the performance of the battery decreasing and can even be exploded. Therefore, a method is needed to control the temperature of the battery. This article will discuss several types of methods of battery thermal management system, one of which is direct or immersion liquid cooling. In this method, the battery can make direct contact with the fluid as its cooling. Increasing the fluid flow rate can also increase the performance of the cooling fluid, but under certain conditions, this does not happen. With this article, it is hoped that it can help academics and industry in developing better electric vehicles.

1.
B.
Petroleum
, “
Statistical Review of World Energy globally consistent data on world energy markets and authoritative publications in the field of energy
,”
BP Energy Outlook
2021, vol. 70, pp.
8
20
,
2021
.
2.
Sunarti
., “
Energy GHG Emissions Inventory
,”
Inventar. Sekt Greenhouse Gas Emissions. Energy of the Year 2020
, p. v,
2020
, [Online]. Available: https://www.esdm.go.id/assets/media/content/content-inventarisasi-emisi-gas-rumah-kaca-sektor-energi-tahun-2020.pdf.
3.
K.
ESDM
, “
Getting to Know Net Zero Emission
,”
2022
. https://ppsdmaparatur.esdm.go.id/berita/berkenalan-dengan-net-zero-emission (accessed Jul. 06, 2022).
4.
Z.
Liu
et al., “
Comparing total cost of ownership of battery electric vehicles and internal combustion engine vehicles
,”
Energy Policy
, vol.
158
, no. October 2020, p.
112564
,
2021
, doi: 10.1016/j.enpol.2021.112564.
5.
S.
Hong
et al., “
Development of Vehicle Thermal Management Model for Improving the Energy Efficiency of Electric Vehicle
,”
2022
, doi: .
6.
M. K.
Hasan
,
M.
Mahmud
,
A. K. M.
Ahasan Habib
,
S. M. A.
Motakabber
, and
S.
Islam
, “
Review of electric vehicle energy storage and management system: Standards, issues, and challenges
,”
J. Energy Storage
, vol.
41
, no. July, p.
102940
,
2021
, doi: .
7.
F.
Wu
et al., “
High-Mass-Loading Electrodes for Advanced Secondary Batteries and Supercapacitors
,”
Electrochem. Energy Rev.
, vol.
4
, no.
2
, pp.
382
–446,
2021
, doi: .
8.
P. R.
Tete
,
M. M.
Gupta
, and
S. S.
Joshi
, “
Numerical investigation on thermal characteristics of a liquid-cooled lithium-ion battery pack with cylindrical cell casings and a square duct
,”
J. Energy Storage
, vol.
48
, no. October 2021, p.
104041
,
2022
, doi: .
9.
Y.
Lyu
,
A. R. M.
Siddique
,
S. H.
Majid
,
M.
Biglarbegian
,
S. A.
Gadsden
, and
S.
Mahmud
, “
Electric vehicle battery thermal management system with thermoelectric cooling
,”
Energy Reports
, vol.
5
, pp.
822
827
,
2019
, doi: .
10.
M.
Al-Zareer
,
I.
Dincer
, and
M. A.
Rosen
, “
A novel phase change based cooling system for prismatic lithium ion batteries
,”
Int. J. Refrig.
, vol.
86
, pp.
203
217
,
2018
, doi: .
11.
F.
Zhang
,
A.
Lin
,
P.
Wang
, and
P.
Liu
, “
Optimization design of a parallel air-cooled battery thermal management system with spoilers
,”
Appl. Therm. Eng.
, vol.
182
, no.
66
, p.
116062
,
2021
, doi: .
12.
N.
Wang
,
C.
Li
,
W.
Li
,
M.
Huang
, and
D.
Qi
, “
Effect analysis on performance enhancement of a novel air cooling battery thermal management system with spoilers
,”
Appl. Therm. Eng.
, vol.
192
, no. April, p.
116932
,
2021
, doi: .
13.
R.
Jilte
,
A.
Afzal
, and
S.
Panchal
, “
A novel battery thermal management system using nano-enhanced phase change materials
,”
Energy
, vol.
219
, p.
119564
,
2021
, doi: .
14.
R.
Fan
,
N.
Zheng
, and
Z.
Sun
, “
Evaluation of fin intensified phase change material systems for thermal management of Li-ion battery modules
,”
Int. J. Heat Mass Transf.
, vol.
166
, p.
120753
,
2021
, doi: .
15.
Y.
Gan
,
J.
Wang
,
J.
Liang
,
Z.
Huang
, and
M.
Hu
, “
Development of thermal equivalent circuit model of heat pipe-based thermal management system for a battery module with cylindrical cells
,”
Appl. Therm. Eng.
, vol.
164
, p.
114523
,
2020
, doi: .
16.
H.
Jouhara
,
N.
Serey
,
N.
Khordehgah
,
R.
Bennett
,
S.
Almahmoud
, and
S. P.
Lester
, “
Investigation, development and experimental analyses of a heat pipe based battery thermal management system
,”
Int. J. Thermofluids
, vol.
1–2
, p.
100004
,
2020
, doi: .
17.
J.
Duan
et al., “
Modeling and analysis of heat dissipation for liquid cooling lithium-ion batteries
,”
Energies
, vol.
14
, no.
14
,
2021
, .
18.
X.
Tang
,
Q.
Guo
,
M.
Li
,
C.
Wei
,
Z.
Pan
, and
Y.
Wang
, “
Performance analysis on liquid-cooled battery thermal management for electric vehicles based on machine learning
,”
J. Power Sources
, vol.
494
, no. February, p.
229727
,
2021
, doi: .
19.
W.
Zhang
,
Z.
Liang
,
X.
Yin
, and
G.
Ling
, “
Avoiding thermal runaway propagation of lithium-ion battery modules by using hybrid phase change material and liquid cooling
,”
Appl. Therm. Eng.
, vol.
184
, p.
116380
,
2021
, doi: .
20.
H.
Liu
,
S.
Ahmad
,
Y.
Shi
, and
J.
Zhao
, “
A parametric study of a hybrid battery thermal management system that couples PCM/copper foam composite with helical liquid channel cooling
,”
Energy
, vol.
231
, p.
120869
,
2021
, doi: .
21.
C.
Aswin Karthik
,
P.
Kalita
,
X.
Cui
, and
X.
Peng
, “
Thermal management for prevention of failures of lithium ion battery packs in electric vehicles: A review and critical future aspects
,”
Energy Storage
, vol.
2
, no.
3
, pp.
1
15
,
2020
, doi: .
22.
G.
Zhao
,
X.
Wang
,
M.
Negnevitsky
, and
H.
Zhang
, “
A review of air-cooling battery thermal management systems for electric and hybrid electric vehicles
,”
J. Power Sources
, vol.
501
, no. April, p.
230001
,
2021
, doi: .
23.
G.
Zhao
,
X.
Wang
, and
M.
Negnevitsky
, “
A study of variable cell spacings to the heat transfer efficiency of air-cooling battery thermal management system
,”
Appl. Sci.
, vol.
11
, no.
23
,
2021
, .
24.
G.
Zhao
,
X.
Wang
,
M.
Negnevitsky
,
H.
Zhang
, and
C.
Li
, “
Performance Improvement of a Novel Trapezoid Air-Cooling Battery Thermal Management System for Electric Vehicles
,”
Sustain.
, vol.
14
, no.
9
,
2022
, .
25.
K.
Chen
,
M.
Song
,
W.
Wei
, and
S.
Wang
, “
Structure optimization of parallel air-cooled battery thermal management system with U-type flow for cooling efficiency improvement
,”
Energy
, vol.
145
, pp.
603
–613,
2018
, doi: .
26.
X.
Li
,
J.
Zhao
,
J.
Yuan
,
J.
Duan
, and
C.
Liang
, “
Simulation and analysis of air cooling configurations for a lithium-ion battery pack
,”
J. Energy Storage
, vol.
35
, no. October 2020, p.
102270
,
2021
, doi: .
27.
S.
Hong
,
X.
Zhang
,
K.
Chen
, and
S.
Wang
, “
Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent
,”
Int. J. Heat Mass Transf.
, vol.
116
, pp.
1204
1212
,
2018
, doi: .
28.
A. A. H.
Akinlabi
and
D.
Solyali
, “
Configuration, design, and optimization of air-cooled battery thermal management system for electric vehicles: A review
,”
Renew. Sustain. Energy Rev.
, vol.
125
, no. February, p.
109815
,
2020
, doi: .
29.
D.
Chen
,
J.
Jiang
,
G. H.
Kim
,
C.
Yang
, and
A.
Pesaran
, “
Comparison of different cooling methods for lithium ion battery cells
,”
Appl. Therm. Eng.
, vol.
94
, pp.
846
854
,
2016
, doi: .
30.
P. R.
Tete
,
M. M.
Gupta
, and
S. S.
Joshi
, “
Developments in battery thermal management systems for electric vehicles: A technical review
,”
J. Energy Storage
, vol.
35
, no. September 2020, p.
102255
,
2021
, doi: .
31.
R.
Gao
,
Z.
Fan
, and
S.
Liu
, “
A gradient channel-based novel design of liquid-cooled battery thermal management system for thermal uniformity improvement
,”
J. Energy Storage
, vol.
48
, no. June 2021, p.
104014
,
2022
, doi: .
32.
F.
Dong
,
Z.
Cheng
,
D.
Song
, and
J.
Ni
, “
Investigation and optimization on cooling performance of serial-parallel mini-channel structure for liquid-cooled soft pack batteries
,”
Numer. Heat Transf. Part A Appl.
, vol.
80
, no.
7
, pp.
368
387
,
2021
, doi: .
33.
H.
Wang
,
T.
Tao
,
J.
Xu
,
X.
Mei
,
X.
Liu
, and
P.
Gou
, “
Cooling capacity of a novel modular liquid-cooled battery thermal management system for cylindrical lithium ion batteries
,”
Appl. Therm. Eng.
, vol.
178
, no. February, p.
115591
,
2020
, doi: .
34.
J.
Wang
,
S.
Lu
,
Y.
Wang
,
Y.
Ni
, and
S.
Zhang
, “
Novel investigation strategy for mini-channel liquid-cooled battery thermal management system
,”
Int. J. Energy Res.
, vol.
44
, no.
3
, pp.
1971
1985
,
2020
, doi: .
35.
Y.
Lai
,
W.
Wu
,
K.
Chen
,
S.
Wang
, and
C.
Xin
, “
A compact and lightweight liquid-cooled thermal management solution for cylindrical lithium-ion power battery pack
,”
Int. J. Heat Mass Transf.
, vol.
144
, p.
118581
,
2019
, doi: .
36.
Y.
Zhao
,
B.
Zou
,
T.
Zhang
,
Z.
Jiang
,
J.
Ding
, and
Y.
Ding
, “
A comprehensive review of composite phase change material based thermal management system for lithium-ion batteries
,”
Renew. Sustain. Energy Rev.
, vol.
167
, no. May, p.
112667
,
2022
, doi: .
37.
C.
Roe
., “
Immersion cooling for lithium-ion batteries – A review
,”
J. Power Sources
, vol.
525
, no. August 2021, p.
231094
,
2022
, doi: .
38.
Y.
Wang
., “
Experimental study on a novel compact cooling system for cylindrical lithium-ion battery module
,”
Appl. Therm. Eng.
, vol.
180
, no. March, p.
115772
,
2020
, doi: .
39.
S.
Wu
., “
High-Performance Thermally Conductive Phase Change Composites by Large-Size Oriented Graphite Sheets for Scalable Thermal Energy Harvesting
,”
Adv. Mater.
, vol.
31
, no.
49
, pp.
1
9
,
2019
, doi: .
40.
T.
Talluri
,
T. H.
Kim
, and
K. J.
Shin
, “
Analysis of a battery pack with a phase change material for the extreme temperature conditions of an electrical vehicle
,”
Energies
, vol.
13
, no.
3
,
2020
, .
41.
C.
Xiao
,
G.
Zhang
,
Z.
Li
, and
X.
Yang
, “
Custom design of solid-solid phase change material with ultra-high thermal stability for battery thermal management
,”
J. Mater. Chem. A
, vol.
8
, no.
29
, pp.
14624
14633
,
2020
, doi: .
42.
J.
Zhang
., “
Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review
,”
Renew. Sustain. Energy Rev.
, vol.
159
, no. November 2021, p.
112207
,
2022
, doi: .
43.
L.
Giammichele
,
V.
D’Alessandro
,
M.
Falone
, and
R.
Ricci
, “
Experimental Study of a Direct Immersion Liquid Cooling of a Li-Ion Battery for Electric Vehicles Applications
,”
Int. J. Heat Technol.
, vol.
40
, no.
1
, pp.
1
8
,
2022
, doi: .
44.
Y.
Zhou
,
Z.
Wang
,
Z.
Xie
, and
Y.
Wang
, “
Parametric Investigation on the Performance of a Battery Thermal Management System with Immersion Cooling
,”
Energies
, vol.
15
, no.
7
, pp.
1
21
,
2022
, doi: .
45.
H.
Wang
,
T.
Tao
,
J.
Xu
,
H.
Shi
,
X.
Mei
, and
P.
Gou
, “
Thermal performance of a liquid-immersed battery thermal management system for lithium-ion pouch batteries
,”
J. Energy Storage
, vol.
46
, no. December 2021, p.
103835
,
2022
, doi: .
46.
K. V.
Jithin
and
P. K.
Rajesh
, “
Numerical analysis of single-phase liquid immersion cooling for lithium-ion battery thermal management using different dielectric fluids
,”
Int. J. Heat Mass Transf.
, vol.
188
, p.
122608
,
2022
, doi: .
47.
J.
Liu
,
Y.
Fan
, and
Q.
Xie
, “
Feasibility study of a novel oil-immersed battery cooling system: Experiments and theoretical analysis
,”
Appl. Therm. Eng.
, vol.
208
, p.
118251
,
2022
, doi: .
48.
I.
Mokashi
,
S. A.
Khan
,
N. A.
Abdullah
,
M. H.
Bin Azami
, and
A.
Afzal
, “
Maximum temperature analysis in a Li-ion battery pack cooled by different fluids
,”
J. Therm. Anal. Calorim.
, vol.
141
, no.
6
, pp.
2555
2571
,
2020
, doi: .
49.
Y.
Huang
,
S.
Wang
,
Y.
Lu
,
R.
Huang
, and
X.
Yu
, “
Study on a liquid cooled battery thermal management system pertaining to the transient regime
,”
Appl. Therm. Eng.
, vol.
180
, no. April, p.
115793
,
2020
, doi: .
This content is only available via PDF.
You do not currently have access to this content.