Due to difficulties in standing, cerebral palsy patients and disabled patients in rehabilitation need a special type of tabletop or standing support equipment. The table can be inclined or tilted to an angle for therapy, daily exercise, and activities including eating. In this paper, several tilt table designs are evaluated and analyzed for their functions and performance in terms of mechanisms, safety, envelope dimensions, ergonomic angles, and degrees of freedom. Two types of mechanisms are considered; four-bar linkage and crank mechanism. The tilt angle of the table is analyzed between 60 and 80 degrees to ensure patient safety.

1.
S.
Østensjø
,
E. B.
Carlberg
and
N. K.
Vøllestad
, “
The use and impact of assistive devices and other environmental modifications on everyday activities and care in young children with cerebral palsy
,”
Disability and Rehabilitation
27
),
849
86
(
2005
).
2.
E.
Rodby-Bousquet
and
A.
Agustsson
, “
Aostural asymmetries and assistive devices used by adults with cerebral palsy in lying, sitting and standing
,”
Frontiers in Neurology
12
,
2288
2296
(
2021
).
3.
M.
Andrews
,
D. M.
Bolt
,
M.
Braun
and
R. E.
Benedict
, “
Measuring exertion during caregiving of children and young adults with cerebral palsy who require assistance for mobility and self-care
,”
Physical & Occupational Therapy in Pediatrics
,
33
(
3
),
300
312
(
2013
).
4.
M.
Donohoe
and
P.
Hove
, “
Activities of daily living supports for persons with cerebral palsy
,”
Cerebral Palsy
,
2987
2997
(
2020
).
5.
E.
Farrell
,
E.
Naber
and
P.
Geigle
, “
Description of a multifaceted rehabilitation program including overground gait training for a child with cerebral palsy: A case report
,”
Physiotherapy Theory and Practice
,
26
(
1
),
56
61
(
2010
).
6.
Y.
Wang
,
J.
Qiu
, J.,
H.
Cheng
and
X.
Zheng
, “
Analysis of human–exoskeleton system interaction for ergonomic design
,”
Human factors
,
0018720820913789
(
2020
).
7.
J.
,
Skottean
N.
Fallentin
, “
Low back injury risk during repositioning of patients in bed: the influence of handling technique, patient weight and disability
,”
Ergonomics
,
51
(
7
),
1042
1052
(
2008
).
8.
B.
Schibye
,
A. F.
Hansen
,
C. T.
Hye-Knudsen
,
M.
Essendrop
,
M.
Böcher
and
J.
Skotte
, “
Biomechanical analysis of the effect of changing patient-handling technique
,”
Applied ergonomics
,
34
(
2
),
115
123
(
2003
).
9.
M.
Padmanabhan
,
T. E.
Rahoof
,
V. M. Vipin
Raj
and
K. Vivek
Krishnan
, “
Pneumatic stretcher chair device for paralysed patients
,”
IJRET
3
,
546
553
(
2014
).
10.
B. E.
Dicianno
,
J.
Arva
,
J. M.
Lieberman
,
M. R.
Schmeler
,
A.
Souza
,
K.
Phillips
,
M.
Lange
,
R.
Cooper
,
K.
Davis
, and
K. L.
Betz
, “
RESNA position on the application of tilt, recline, and elevating legrests for wheelchairs
,”
Assistive Technology
21
(
1
),
13
22
(
2009
).
11.
R. S.
Bridger
, “
Some fundamental aspects of posture related to ergonomics
,”
International Journal of Industrial Ergonomics
8
(
1
),
3
15
(
1991
).
12.
D.
Ding
,
E.
Leister
,
R. A.
Cooper
,
R.
Cooper
,
A.
Kelleher
,
S. G.
Fitzgerald
and
M. L.
Boninger
, “
Usage of tilt-in-space, recline, and elevation seating functions in natural environment of wheelchair users
,”
Journal of Rehabilitation Research & Development
45
(
7
) (
2008
).
13.
H.
Kagaya
,
Y.
Inamoto
,
S.
Okada
and
E.
Saitoh
, “
Body positions and functional training to reduce aspiration in patients with dysphagia
,”
JMAJ
54
),
35
8
(
2011
).
14.
C. Y.
Kim
, C. Y.,
Lee
,
J. S.
,
Kim
,
H. D.
,
Kim
,
J.
, &
Lee
,
I. H.
, “
Lower extremity muscle activation and function in progressive task-oriented training on the supplementary tilt table during stepping-like movements in patients with acute stroke hemiparesis
,”
Journal of Electromyography and Kinesiology
,
25
(
3
),
522
530
(
2015
).
15.
B. P.
Grubb
and
D.
Kosinski
, “
Tilt table testing: concepts and limitations
,”
Pacing and clinical electrophysiology
20
(
3
),
781
787
(
1997
).
16.
D. G.
Benditt
,
D. W.
Ferguson
,
B. P.
Grubb
,
W. N.
Kapoor
,
J.
Kugler
,
B. B.
Lerman
,
J. D.
Maloney
,
A.
Ravielle
,
B.
Ross
,
R.
Sutton
and
M. J.
Wolk
, “
Tilt table testing for assessing syncope
,”
Journal of the American College of Cardiology
28
(
1
),
263
275
(
1996
).
17.
A. T.
Chang
,
R.
Boots
,
P. W.
Hodges
and
J.
Paratz
, “
Standing with assistance of a tilt table in intensive care: a survey of Australian physiotherapy practice
,”
Australian Journal of Physiotherapy
50
(
1
),
51
54
(
2004
).
18.
J. X.
Chen
,
S. W.
Lin
,
X. L.
Zhou
and
T. Q.
Gu
, “
A ballbar test for measurement and identification the comprehensive error of tilt table
,”
International Journal of Machine Tools and Manufacture
103
,
1
12
(
2016
).
19.
N.
Teodorovich
and
M.
Swissa
, “
Tilt table test today-state of the art
,”
World Journal of Cardiology
8
(
3
),
277
(
2016
).
20.
S.
Erkaya
and
I.
Uzmay
, “
Investigation on effect of joint clearance on dynamics of four-bar mechanism
,”
Nonlinear Dynamics
58
(
1
),
179
198
(
2009
).
21.
M. E.
Alfaro
,
D. I.
Bolnick
and
P. C.
Wainwright
, “
Evolutionary dynamics of complex biomechanical systems: an example using the four-bar mechanism
,”
Evolution
58
(
3
),
495
503
(
2004
).
22.
B. J.
Bergelin
and
P. A.
Voglewede
, “
Design of an active ankle-foot prosthesis utilizing a four-bar mechanism
,”
Journal of Mechanical Design
134
(
6
),
061004
(
2012
).
23.
N. N.
Naveen
,
M.
Malashree
,
C.
Meghana
,
M. C.
Manorama
,
N. Nirmala
Bai
and
H.
Shreehari
, “
Automated overhead tank cleaning system with bluetooth module
,”
IJRPR
3
(
7
),
2212
2221
(
2022
).
24.
S. B.
Farahan
,
M. R.
Ghazavi
and
S.
Rahmanian
, “
Bifurcation in a planar four-bar mechanism with revolute clearance joint
,”
Nonlinear Dynamics
87
(
2
),
955
973
(
2017
).
25.
W. T.
Chang
,
C. C.
Lin
and
L. I.
Wu
, “
A note on Grashof’s theorem
,”
Journal of Marine Science and Technology
13
(
4
),
239
248
(
2005
).
26.
D. M.
Lu
and
W. M.
Hwang
, “
Spherical four-bar linkages with symmetrical coupler-curves
,”
Mechanism and Machine Theory
31
(
1
),
1
10
(
1996
).
27.
M. H.
Ali
,
N.
Mir-Nasiri
and
M. H.
Tanveer
, “
A new coupler critical dimensions (CCD) method for linkage mechanisms mobility analysis
,”
Manufacturing Technology
21
),
288
293
(
2021
).
28.
M.
Abdulkadar
and
B.
Deshmukh
,
“Simulation of four bar mechanism for path generation,” International Journal of Emerging Technology and Advanced Engineering
3
(
9
),
637
640
(
2013
).
29.
L.
Dulger
,
H.
Erdogan
and
M.
Kutuk
, “
Matlab’s GA and optimization toolbox: a fourbar mechanism application
,”
International Journal of Intelligent Systems and Applications in Engineering
2
(
1
),
10
15
(
2014
).
30.
G.
Asaeikheybari
,
A. S.
Lafmejani
,
A.
Kalhor
and
M. T.
Masouleh
,
“Dimensional synthesis of a four-bar linkage mechanism via a pso-based cooperative neural network approach,” in
2017 Iranian Conference on Electrical Engineering (ICEE
), (
IEEE
,
2017
), pp.
906
911
.
31.
I.
Khemili
and
L.
Romdhane
, “
Dynamic analysis of a flexible slider–crank mechanism with clearance
,”
European Journal of Mechanics-A/Solids
27
(
5
),
882
898
(
2008
).
32.
J. L.
Ha
,
R. F.
Fung
,
K. Y.
Chen
and
S. C.
Hsien
, “
Dynamic modeling and identification of a slider-crank mechanism
,”
Journal of Sound and Vibration
289
(
4-5
),
1019
1044
(
2006
).
33.
S.
Erkaya
and
I.
Uzmay
, “
Experimental investigation of joint clearance effects on the dynamics of a slider-crank mechanism
,”
Multibody System Dynamics
24
(
1
),
81
102
(
2010
).
34.
A. A.
Olyaei
and
M. R.
Ghazavi
, “
Stabilizing slider-crank mechanism with clearance joints
,”
Mechanism and Machine Theory
53
,
17
29
(
2012
).
35.
C. C.
Kao
,
C. W.
Chuang
and
R. F.
Fung
, “
The self-tuning PID control in a slider–crank mechanism system by applying particle swarm optimization approach
,”
Mechatronics
16
(
8
),
513
522
(
2006
).
36.
I. S.
Fischer
and
S.
Rahman
, “Kinematics of the generalized slider-crank mechanism,” in
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
11818
, (
American Society of Mechanical Engineers
,
1993
), pp.
325
331
.
37.
E.
Rashed
,
M.
Damir
and
A.
Elkhatib
, “
Effect of tolerances of small size slider-crank mechanism on position errors and uncertainty
,”
in The International Conference on Applied Mechanics and Mechanical Engineering
,
18
, (
Military Technical College
,
2018
), pp.
1
13
.
38.
S.
Dutta
and
T. K.
Naskar
,
“Synthesis of adjustable offset slider-crank mechanism for simultaneous generation of function and path using variable-length links,” in
Proceedings of the 1st International and 16th National Conference of Machines and Mechanisms 2013
, (
IIT Rookee
,
India
,
2013
), pp.
18
20
.
39.
W. P.
Boyle
and
K.
Liu
, “
The offset slider crank: kinematic pseudographic analysis
,”
International Journal of Engineering Education
13
,
198
203
(
1997
).
40.
J. F.
Hsieh
, “
Design and analysis of offset slider-crank with translating roller-follower
,”
Transactions of the Canadian Society for Mechanical Engineering
35
(
3
),
419
436
(
2011
).
41.
E. G.
Qu
and
H. P.
Zhang
, “
Optimization design and motion simulation of offset slider-crank mechanism
,”
Advanced Materials Research
403
, (Trans Tech Publications Ltd,
2012
), pp.
4216
4220
.
42.
V.
Arakelian
and
Y.
Zhang
, “
An improved design of gravity compensators based on the inverted slider-crank mechanism
,”
Journal of Mechanisms and Robotics
11
(
3
),
034501
(
2019
).
43.
V. S.
Karelin
, “
On the synthesis of the inverted slider-crank mechanisms for approximate straight line motion
,”
Mechanism and Machine Theory
21
(
1
),
13
18
(
1986
).
44.
R.
Silva
,
M.
Nunes
,
J.
Bento
and
V.
Costa
, “
Modelling an inverted slider crank mechanism considering kinematic analysis and multibody aspects
,” in
Proceedings of the XV International Symposium on Dynamic Problems of Mechanics (DINAME 2013
), pp.
17
22
.
45.
J. L.
Lau
and
G. S.
Soh
, “A wearable joint sensing device based on the inverted slider crank,” in
USCToMM Symposium on Mechanical Systems and Robotics
(
Springer
,
Cham
2020
), pp.
137
148
.
This content is only available via PDF.
You do not currently have access to this content.