The mechanical properties of a newly developed polymeric nanocomposite material, including its fabrication, formation, and performance, were investigated through experimental and numerical analysis. The obtained results were then compared with mechanical test results of the newly produced multiwalled carbon material. The composite material was formulated by incorporating nanotubes, carbon fibers, and epoxy in specific weight ratios, enabling it to withstand both mechanical and environmental stresses when implemented in engineering applications. Additionally, vibration response analysis was conducted using ANSYS simulation software, employing evolutionary numerical methods. This analysis provided insights into the behavior of the material under different mechanical conditions. Through a comprehensive understanding of the material’s performance in mechanical engineering tests and the optimization of weight ratios, a new nanomaterial was successfully created, meeting the desired engineering specifications and advancing the field of nanoscience.

1.
S.
Azizi
,
A. M.
Fattahi
, and
J. T.
Kahnamouei
. "
Evaluating mechanical properties of nanoplatelet reinforced composites under mechanical and thermal loads
."
Journal of Computational and theoretical nanoscience
12
.
11
(
2015
):
4179
4185
.
2.
R.
Tebeta
,
T. A. M.
Fattahi
, and
N. A.
Ahmed
. "Prediction of the elastic behavior of HDPE/SWCNTs nanocomposites with FEM approach."
Journal of physics: conference series.
Vol.
1378
. No.
3
.
IOP Publishing
,
2019
.
3.
M.
Dresselhaus
, S. &
Avouris
,
P.
(Introduction to carbon materials research. In
Carbon nanotubes: synthesis, structure, properties, and applications,
Berlin, Heidelberg
:
Springer Berlin Heidelberg
.
2001
), (pp.
1
9
).
4.
M. K.
Kassa
, &
Arumugam
,
A. B.
Micromechanical modeling and characterization of elastic behavior of carbon nanotube-reinforced polymer nanocomposites: A combined numerical approach and experimental verification
. (
Polymer Composites
,
2020
)
41
(
8
),
3322
3339
.
5.
H. D.
Dee
, “
Analyzing manufacturing methods of carbon nanotubes for commercialization
(Doctoral dissertation,
Massachusetts Institute of Technology
,
2013
.
6.
F.
Wang
, &
Cai
,
X.
Improvement of mechanical properties and thermal conductivity of carbon fiber laminated composites through depositing graphene nanoplatelets on fibers
(
Journal of Materials Science
,
2019
)
54
(
5
),
3847
3862
.
7.
B.
Thomas
, &
T.
Roy
,
Vibration analysis of functionally graded carbon nanotube-reinforced composite shell structures
(Acta Mechanica,
2016
).
227
(
2
),
581
599
.
8.
M.
Rafiee
,
F.
Nitzsche
, &
M. R
Labrosse
,
Effect of functionalization of carbon nanotubes on vibration and damping characteristics of epoxy nanocomposites
(
Polymer Testing
,
2018
),
69
,
385
395
.
9.
R. T.
Tebeta
,
A. M.
Fattahi
, &
N. A.
Ahmed
,
Experimental and numerical study on HDPE/SWCNT nanocomposite elastic properties considering the processing techniques effect
(
Microsystem Technologies
,
2020
).
26
,
2423
2441
.
10.
M. M.
Shokrieh
, &
R.
Rafiee
,
Prediction of mechanical properties of an embedded carbon nanotube in polymer matrix based on developing an equivalent long fiber
(
Mechanics Research Communications
,
2010
)
37
(
2
),
235
240
.
11.
M. K.
Kassa
, &
A. B.
Arumugam
,
Micromechanical modeling and characterization of elastic behavior of carbon nanotube-reinforced polymer nanocomposites: A combined numerical approach and experimental verification
. (
Polymer Composites
,
2020
)
41
(
8
),
3322
3339
.
12.
Z.
Yao
,
C. C.
Zhu
,
M.
Cheng
, &
J.
Liu
,
Mechanical properties of carbon nanotube by molecular dynamics simulation
(
Computational Materials Science
,
2001
)
22
(
3-4
),
180
184
.
13.
B.
Hamers
,
ST
,
P. J.
, &
M. A. J.
Veld
,
The Wondrous World of Carbon Nanotubes
(
Eindhoven University of Technology: Eindhoven,
The Netherlands.
2003
).
14.
Y.
ANDO
,
X.
ZHAO
,
T.
SUGAI
, and
M.
KUMAR
,
Growing Carbon Nanotubes
(
Materials Today
,
2004
)
7
(
10
), pp.
22
29
.
15.
O.
MARIETTA-TONDIN
, “
Molecular Modeling of Nanotube Composite Materials: Interface Formation, Interfacial Strength, and Thermal Expansion
” PhD thesis,
Florida State University
,
2005
.
16.
M.
DAENEN
,
R.D.
DE FOUW
,
B.
HAMERS
,
P.G.A.
JANSSEN
,
K.
SCHOUTEDEN
, and
M.A.J.
VELD
,
The Wondrous World of Carbon Nanotubes: A Review of Current Carbon Nanotubes Technologies
(
Eindhoven University of Technology,
2003
)
17.
D.
Che
,
I.
Saxena
,
P.
Han
,
P.
Guo
, and
K.F.
Ehmann
,
J. Manuf. Sci. Eng.
,
136
,
034001
(
2014
).
18.
B.
Denkena
,
New Production Technologies in Aerospace Industry
, (
Springer International Publishing, Switzerland
,
2014
)
19.
Qin
,
Wenzhen
, et al. "
Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber–matrix interphase
."
Composites Part B: Engineering
69
(
2015
):
335
341
.
20.
S. C.
Tjong
, “
Structural and mechanical properties of polymer nanocomposites
” (
Materials Science & Engineering R-Reports,
2006
)
53
(
3 – 4
),
73
197
.
21.
A. C.
Balazs
,
T.
Emrick
,
T. P.
Russell
, “
Nanoparticle polymer composites: Where two small worlds meet
”,
(Science,
2006
)
314
(
5802
),
1107
1110
.
22.
A. M.
Mayes
, “
Nanocomposites—softer at the boundary
”, (
Nature Materials
,
2005
)
4
(
9
),
651
652
.
23.
S.
Ahmed
,
F. R.
Jones
, “
A review of particulate reinforcement theories for polymer composites
”, (
Journal of Materials Science
,
1990
)
25
(
12
),
4933
4942
24.
K.
Koziol
,
J.
Vilatela
,
A.
Moisala
,
M.
Motta
,
P.
Cunniff
,
M.
Sennett
,
A.
Windle
, (
Science
,
2007
)
318
,
1892
.
25.
B.
Chen
,
S.
Li
,
H.
Imai
,
L.
Jia
,
J.
Umeda
,
M.
Takahashi
, &
K.
Kondoh
, “
Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in-situ tensile tests
”, (
Composites Science and Technology
,
2015
)
113
,
1
8
.
26.
A.
Mikhalchan
,
T.
Gspann
, &
A.
Windle
, “
Aligned carbon nanotube–epoxy composites: the effect of nanotube organization on strength, stiffness, and toughness
” (
Journal of Materials Science
,
2016
)
51
,
10005
10025
.
27.
P. E.
Lopes
,
F.
Van Hattum
,
C. M.
Pereira
,
P. J.
Nóvoa
,
S.
Forero
,
F.
Hepp
, &
L.
Pambaguian
, “
High CNT content composites with CNT Bucky paper and epoxy resin matrix: Impregnation behavior composite production and characterization
” (
Composite Structures
,
2010
)
92
(
6
),
1291
1298
.
28.
R. J.
Mora
,
J. J.
Vilatela
, &
A. H.
Windle
, “
Properties of composites of carbon nanotube fibres
” (
Composites Science and Technology,
2009
)
69
(
10
),
1558
1563
.
29.
P. D.
Bradford
,
X.
Wang
,
H.
Zhao
,
J. P.
Maria
,
Q.
Jia
, &
Y. T.
Zhu
A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes
” (
Composites Science and Technology
,
2010
)
70
(
13
),
1980
1985
.
30.
Y.
Yu
,
C.
Zhao
,
Q.
Li
,
J.
Li
, &
Y.
Zhu
,
A novel approach to align carbon nanotubes via water-assisted shear stretching
(
Composites Science and Technology,
2018
)
164
,
1
7
.
31.
TH.
Nam
,
K.
Goto
,
H.
Nakayama
,
K.
Oshima
,
V.
Premalal
,
Y.
Shimamura
Effects of stretching on mechanical properties of aligned multi-walled carbon nanotube/epoxy composites
” (
Compos Part A Appl Sci Manuf
,
2014
)
64
:
194
202
.
32.
Z.
Li
,
JG.
Park
,
Z.
Liang
High-performance multifunctional thermoplastic composites enhanced by aligned Bucky paper
” (
Adv Eng Mater
,
2016
)
18
:
1460
1468
.
33.
Shao
,
H.
,
Chen
,
B.
,
Li
,
B.
,
Tang
,
S.
, &
Li
,
Z
Influence of dispersants on the properties of CNTs reinforced cement-based materials
” (
Construction and Building Materials
,
2017
)
131
,
186
194
.
34.
O. A.
Mendoza-Reales
,
G.
Sierra-Gallego
, &
J. I.
Tobón
The mechanical properties of Portland cement mortars blended with carbon nanotubes and nanosilica: A study by experimental design
” (
Dyna
,
2016
).
83
(
198
),
136
141
.
35.
C. T.
Sun
, &
S.
Chattopadhyay
Dynamic response of anisotropic laminated plates under initial stress to impact of a mass
” (
1975
).
36.
Z.G.
Song
,
L.W.
Zhang
,
K.M.
Liew
,
Dynamic responses of CNT reinforced composite plates subjected to impact loading
” (
Composites Part B: Engineering,
2016
)
37.
Y.
Li
, &
J.
Cao
, “
The impact of multi-walled carbon nanotubes (MWCNTs) on macrophages: contribution of MWCNT characteristics
” (
Science China Life Sciences
,
2018
)
61
,
1333
1351
.
38.
B.
Yakobson
and
L.
Couchman
(
Journal of Nanoparticle Research
,
2006
)
8
,
105
110
39.
Y.
Wang
,
M. R.
Semler
,
I.
Ostanin
,
E. K.
Hobbie
and
T.
Dumitrica
, ˘ (
Materials Today
,
2015
)
18
,
265
272
.
40.
Z.
Xu
and
C.
Gao
, (
Nature Communications
,
2011
)
2
,
571
41.
C.
Xiang
,
N.
Behabtu
,
Y.
Liu
,
H. G.
Chae
,
C. C.
Young
,
B.
Genorio
,
D. E.
Tsentalovich
,
C.
Zhang
,
D. V.
Kosynkin
,
J. R.
Lomeda
,
C.-C.
Hwang
,
S.
Kumar
,
M.
Pasquali
and
J. M.
Tour
(
ACS Nano
,
2013
)
7
,
1628
1637
.
42.
E. T.
Thostenson
, &
T. W.
Chou
Real-time in situ sensing of damage evolution in advanced fiber composites using carbon nanotube networks
” (
Nanotechnology,
2008
)
19
(
21
),
215713
.
43.
Gao
,
Limin
,
Thostenson
,
Erik
T.
,
Zhang
,
Zuoguang
,
Byun
,
Joon-Hyung
,
Chou
,
Tsu-Wei
Damage monitoring in fiber-reinforced composites under fatigue loading using carbon nanotube networks
” (
Philosophical Magazine
,
2010
)
90
(
31-32
),
4085
4099
.
45.
L. S.
Schadler
,
S. C.
Giannaris
,
P. M.
Ajayan
, (
Appl. Phys. Lett,
1998
)
73
,
3842
.
46.
E. T.
Thostenson
,
Z.
Ren
,
T.-W.
Chou
, (
Compos. Sci. Technol.
2001
)
61
,
1899
.
47.
C.
Velasco-Santos
,
A. L.
Martinez-Hernandez
,
V. M.
Castano
, (
Compos. Interfaces
,
2005
)
11
,
567
49.
E.T.
Thostenson
,
Z.F.
Ren
,
T.W.
Chou
Advances in the science and technology of carbon nanotubes and their composites: a review
” (
Compos. Sci. Technol
,
2001
)
61
,
1899
1912
50.
H.
Dai
Carbon nanotubes: opportunities and challenges
” (
Surf. Sci,
2002
)
500
,
218
241
51.
H.S.
Shen
Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments
” (
Compos. Struct,
2009
)
91
,
9
19
52.
H.S.
Shen
Post buckling of nanotube–reinforced composite cylindrical shells in thermal environments, Part I: axially-loaded shells
” (
Compos. Struct
,
2011
)
93
,
2096
2108
53.
B.
Thomas
, &
T.
Roy
Vibration analysis of functionally graded carbon nanotube-reinforced composite shell structures
” (
Acta Mechanica,
2016
)
227
(
2
),
581
599
.
54.
N.
Wattanasakulpong
, &
V.
Ungbhakorn
) “
Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation
” (
Computational Materials Science
,
2013
)
71
,
201
208
.
55.
M.
Zhou
,
Y.
Fu
,
B.
Wang
H.
Ji
Investigation upon the performance of piezoelectric energy harvester with elastic extensions
” (
Applied Mathematical Modelling
,
2020
)
83
,
438
453
.
56.
M.
Heshmati
&
Y. J. A. M. M.
Amini
A comprehensive study on the functionally graded piezoelectric energy harvesting from vibrations of a graded beam under travelling multi-oscillators
” (
Applied Mathematical Modelling
,
2019
)
66
,
344
361
.
57.
A.
Eyvazian
Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core
” (
Steel and Composite Structures, An International Journal
,
2019
)
33
(
6
),
891
906
.
58.
C.
Tuloup
,
W.
Harizi
,
Z.
Aboura
,
Y. A. N. N.
Meyer
,
K.
Khellil
&
R.
Lachat
On the use of in-situ piezoelectric sensors for the manufacturing and structural health monitoring of polymer-matrix composites: A literature review
” (
Composite Structures,
2019
)
215
,
127
149
.
59.
I.A.
Ashcroft
,
A.
Mubashar
, Numerical Approach: Finite Element Analysis. In:
da Silva
,
L.F.M.
,
edited by A.
Öchsner
,
R.D.
Adams
, (
Handbook of Adhesion Technology
.
Springer
,
Berlin, Heidelberg
,
2011
).
60.
M.
Nejati
,
A.
Asanjarani
,
R.
Dimitri
&
F.
Tornabene
Static and free vibration analysis of functionally graded conical shells reinforced by carbon nanotubes
” (
International Journal of Mechanical Sciences
,
2017
)
130
,
383
398
.
61.
N. V.
Thanh
,
N. D.
Khoa
,
N. D.
Tuan
,
P.
Tran
N. D.
Duc
Nonlinear dynamic response and vibration of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shear deformable plates with temperature-dependent material properties and surrounded on elastic foundations
” (
Journal of Thermal Stresses
,
2017
)
40
(
10
),
1254
1274
.
62.
R.
Bala
,
A.
Marwaha
&
S.
Marwaha
Comparative analysis of zigzag and armchair structures for graphene patch antenna in THz band
” (
Journal of Materials Science: Materials in Electronics
,
2016
)
27
(
5
),
5064
5069
.
63.
B.
Sobhaniaragh
,
R. C.
Batra
,
W. J.
Mansur
&
F. C.
Peters
Thermal response of ceramic matrix nanocomposite cylindrical shells using Eshelby-Mori-Tanaka homogenization scheme
” (
Composites Part B: Engineering,
2017
)
118
,
41
53
.
64.
M. Sharif
Zarei
,
M. H.
Hajmohammad
,
M.
Mostafavifar
&
M.
Mohammadimehr
Influence of temperature change and humidity condition on free vibration analysis of a nano composite sandwich plate resting on orthotropic Pasternak foundation by considering agglomeration effect
” (
Journal of Sandwich Structures & Materials
,
2017
)
1099636217735118
.
65.
M.
Kühn
&
H.
Kliem
A numerical method for the calculation of dielectric nanocomposites
” (
IEEE Transactions on Dielectrics and Electrical Insulation
,
2010
)
17
(
5
),
1499
1508
.
66.
Yoshimoto
,
Y.
Nakasone
. "
Engineering Analysis with ANSYS Software.
" (
2006
).
67.
A.
Elhadi
,
S.
Amroune
,
M.
Zaoui
,
B.
Mohamad
,
A.
Bouchoucha
. "
Experimental investigations of surface wear by dry sliding and induced damage of medium carbon steel
."
Diagnostyka.
2021
;
22
(
2
):
3
-
10
. Available at: .
68.
H.
Al-Abboodi
,
H.
Fan
,
M.
Al-Bahrani
,
A.
Abdelhussien
,
B.
Mohamad
. "
Mechanical characteristics of nano-crystalline material in metallic glass formers
."
Facta Universitatis-Series Mechanical Engineering
,
2023
. doi: .
69.
A.
Aldeen
,
D.
Mahdi
,
C.
Zhongwei
,
I.
Disher
,
B.
Mohamad
. "
Effect of isothermal and isochronal aging on the microstructure and precipitate evolution in beta-quenched N36 Zirconium alloy
."
Facta Universitatis-Series Mechanical Engineering
,
2023
. doi:
This content is only available via PDF.
You do not currently have access to this content.