Cardiac disease has become one of the major causes of death in recent years. One important risk factor of an individual having cardiac disease is hypercholesterolemia, which also contributes to other diseases, for example, cerebrovascular disease, peripheral arterial disease, and coronary heart disease. However, most cases of cardiac disease were detected late. To detect hypercholesterolemia, we built a few machine-learning models from 336 individuals consisting of several factors, for instance, gender, marital status, alcohol consumption, hypertension, and age, among others. Furthermore, we analyzed the top five factors contributing to hypercholesterolemia. Before building the models, we preprocessed all data. We compared all machine learning models using the cross-validation method. The best model showed a high accuracy score of 0.89 and an AUC score of 0.94.

1.
Mensah
,
George
A.
, et al.
Circulation research
120
(
2
) (
2017
):
366
-
380
.
2.
McAloon
,
C. J.
, et al.
Cardiovascular Diseases
.
Academic Press
,
2016
.
57
-
96
.
3.
Hussain
,
Mohammad
Akhtar
, et al.
Journal of epidemiology
26
.
10
(
2016
):
515
-
521
.
4.
C. W.
Tsao
, et al.
Circulation.
145
,
8
,
e153
e639
(
2022
).
5.
American Heart Association
.
About Cholesterol
, (
2021
).
7.
C.
Cimminiello
,
A.
Zambon
,
H. P.
Friz
.
Giornale Italiano Di Cardiologia.
17
(
2016
).
8.
S. M.
Grundy
, et al.
J Am Coll Cardiol.
73
,
24
,
3168
3209
(
2019
).
9.
Z. I.
Attia
, et al.
Nature Medicine.
25
,
70
74
(
2019
).
10.
E.
Dritsas
,
M.
Trigka
.
Sensors.
22
(
14
):
5365
(
2022
).
11.
D. T.
Larose
,
C. D.
Larose
.
Data Mining and Predictive Analytics
, 2nd Edition.
Willey
, (
2015
).
12.
D. M.
Hawkins
,
S. C.
Basak
,
D.
Mills
.
J. Chem. Inf. Comput. Sci.
43
(
2
),
579
586
(
2003
).
13.
S.
Arlot
,
A.
Celisse
.
Statistics Surveys.
4
,
40
79
(
2010
).
14.
J.
Hao
,
T. K.
Ho
.
Machine Learning Made Easy: A Review of Scikit-learn Package in Python Programming Language
.
J. Educ. Behav. Stat.
.
44
,
3
(
2019
).
15.
F.
Pedregosa
, et al.
Scikit-learn: Machine Learning in Python
.
J. Mach. Learn. Res.
.
12
,
2825
2830
(
2011
).
16.
J.
Fan
,
S.
Upadhye
,
A.
Worster
.
Can. J. Emerg. Med.
.
8
,
1
,
19
20
(
2006
).
17.
L.
Gonçalves
,
A.
Subtil
,
M. R.
Oliveira
,
P. D. Z.
Bermudez
.
REVSTAT-Statistical Journal.
12
,
1
(
2014
).
18.
G. K.
Rajbahadur
,
S.
Wang
,
G. A.
Oliva
,
Y.
Kamei
and
A. E.
Hassan
.
IEEE Transactions on Software Engineering
,
48
,
7
,
2245
2261
(
2022
).
19.
A.
Altmann
,
L.
Toloşi
,
O.
Sander
,
T.
Lengauer
.
Bioinformatics.
26
,
10
(
2010
).
20.
Z.
Zhou
,
G.
Hooker
.
Discovery from Data.
15
,
2
,
1
21
(
2021
).
21.
H. Benson
Peng
, et al.
Biopharmaceutics & Drug Disposition.
42
,
8
,
372
388
(
2021
).
22.
Y.
Murakami
,
Y.
Kato
.
Endocrine Journal.
50
,
6
,
759
765
(
2003
).
This content is only available via PDF.
You do not currently have access to this content.