Nonlocal theories are widely used in the mathematical modeling and analysis of solid structures and materials, particularly in micro-nano/structural studies, including fatigue assessment and crack analysis of these structures. Hence, contrasting the outcomes of these theories can significantly help in the selection of a more appropriate and practical model. In this paper, two nonlocal theories, the nonlocal elasticity model, and the stress intensity factor model were employed to analyze an elastic plate with a tip crack. An elastic plate with a tip crack under the impact of axial tension was examined and the results of maximum stress component along the crack line for various crack sizes were compared. Also, the effect of characteristic length in nonlocal models was investigated. Furthermore, ABAQUS CAE software was utilized for finite element modeling by applying the mechanical properties of an elastic steel plate to numerically investigate the elastic plate with a tip crack. The results illustrate the mesh sensitivity of finite element modeling and its compatibility with the stress intensity factor model; however, the numerical study cannot demonstrate the characteristic length effect.

1.
M.
Fazlali
,
S. H.
Moghtaderi
and
S. A.
Faghidian
,
Mater. Res. Express
8
,
3
,
035011
(
2021
).
2.
S. H.
Moghtaderi
,
S. A.
Faghidian
and
H. M.
Shodja
,
Steel Compos. Struct.
29
,
4
,
483
91
(
2018
).
3.
P. H.
Cong
and
D. N.
Duc
,
Thin-Walled Struct. A
182
,
110146
(
2023
).
4.
R.
Cavuoto
,
A.
Cutolo
,
K.
Dayal
,
L.
Deseri
and
M.
Fraldi
,
J. Mech. Phys. Solids
172
,
105189
(
2023
).
5.
S. A.
Faghidian
and
H.
Mohammad-Sedighi
,
Eng. Comput.
38
,
2487
96
(
2022
).
6.
S. H.
Moghtaderi
,
S. A.
Faghidian
and
M.
Asghari
,
Mech. Based Des. Struct. Mach.
51
,
3
,
1316
34
(
2023
).
7.
S. H.
Moghtaderi
,
A.
Jedi
and
A. K.
Ariffin
,
Materials
16
,
2
,
831
(
2023
).
8.
A. C.
Eringen
and
D. G. B.
Edelen
,
Int. J. Eng. Sci.
10
,
3
,
233
48
(
1972
).
9.
J. N.
Reddy
,
Int. J. Eng. Sci.
48
,
1507
18
(
2010
).
10.
J.
Baumgartner
,
H.
Schmidt
,
E.
Ince
,
T.
Melz
and
K.
Digler
,
Weld. World
59
,
731
42
(
2015
).
11.
R.
Duddu
and
H.
Waisman
,
Comput. Mech.
51
,
961
74
(
2013
)
12.
R.
Ferré
,
S.
Fouvry
,
B.
Berthel
and
J. A.
Ruiz-Sabariego
,
Int. J. Fatigue
54
,
56
67
(
2013
).
13.
L. F.
Pereira
,
J.
Weerheijm
and
L. J.
Sluys
,
Eng. Fract. Mech.
182
,
689
707
(
2017
).
14.
T. H. A.
Nguyen
and
J.
Niiranen
,
Thin-Walled Struct.
164
,
107876
(
2021
).
15.
J. C.
He
,
S. P.
Zhu
,
D.
Liao
and
X. P.
Niu
,
Eng. Fract. Mech.
235
,
107150
(
2020
).
16.
D.
Liao
,
S. P.
Zhu
,
B.
Keshtegar
,
G.
Qian
and
Q.
Wang
,
Int. J. Mech. Sci.
181
,
105685
(
2020
).
17.
P.
Thamburaja
,
K.
Sarah
,
A.
Srinivasa
,
J. N.
Reddy
,
Proc. R. Soc. A
477
,
2252
(
2021
).
18.
E.
Lorentz
,
Int. J. Fract.
207
,
123
59
(
2017
).
19.
Z.
Zhang
,
C.
Zhou
,
A.
Saputra
,
Y.
Yang
and
C.
Song
,
Eng. Fract. Mech.
240
,
107362
(
2020
).
20.
M.
Nahrmann
and
A.
Matzenmiller
,
Int. J. Solids Struct.
232
,
111166
(
2021
).
21.
A. C.
Eringen
,
C. G.
Speziale
and
B. S.
Kim
,
J. Mech. Phys. Solids
25
,
5
,
339
55
(
1977
).
22.
I. N.
Sneddon
,
Fourier transforms
(
Courier Corporation
,
New York
,
1995
).
23.
A. C.
Eringen
,
Nonlocal continuum field theories
(
Springer
,
New York
,
2004
).
24.
R. I.
Stephens
,
A.
Fatemi
,
R. R.
Stephens
and
H. O.
Fuchs
,
Metal fatigue in engineering
(
Wiley & Sons
,
New York
,
2000
).
25.
H. Y.
Shin
,
P.
Thamburaja
,
A. R.
Srinivasa
and
J. N.
Reddy
,
J. Mech. Phys. Solids
170
,
105097
(
2023
).
26.
R.
Alebrahim
,
P.
Thamburaja
,
A.
Srinivasa
and
J. N.
Reddy
,
Comput. Methods Appl. Mech. Eng. A
403
,
115727
(
2023
).
27.
P.
Thamburaja
,
K.
Sarah
,
A.
Srinivasa
and
J. N.
Reddy
,
Comput. Methods Appl. Mech. Eng.
354
,
871
903
(
2019
).
This content is only available via PDF.
You do not currently have access to this content.