In this paper, an experimental investigation is conducted to examine the electrical conductivity of glass epoxy composites containing graphene and carbon nanofillers. The hand lay-up technique was used to fabricate the GN–glass, MWCN–glass, and GN–MWCN–glass hybrid epoxy composites. The nanofiller weight fraction at 1.5 and 3 wt. % was analysed. The electrical conductivity test was carried out using two-probe methods to evaluate the GN and MWCN nanofiller’s contribution to forming conductive networks within the epoxy matrix and glass fibre. The result indicates a higher electrical conductivity value of GN–MWCN–glass hybrid epoxy composites due to hybrid nanofillers incorporation. Field emission scanning electron microscope analyses the nanofiller’s dispersion and random distribution in the composites. The good conductivity was related to the better bond formation of the nanofillers with the epoxy matrix. The electrical conductivity results obtained from this study will serve as a basis for investigating the correlation between electrical resistance and strain characteristics in the self-sensing monitoring composite for future research.

1.
Bouhamed
A
,
Al-Hamry
A
,
Müller
C
,
Choura
S
,
Kanoun
O.
Assessing the electrical behaviour of MWCNs/epoxy nanocomposite for strain sensing
.
Compos Part B Eng
2017
;
128
:
91
9
.
2.
Zhang
Y
,
Zhou
Z
,
Wang
J
,
Liu
S
,
Zhang
Y.
Graphene Nanocomposites in Optoelectronics.
Graphene-Based Polym. Nanocomposites Electron
.,
Cham
:
Springer International Publishing
;
2015
, p.
131
56
.
3.
Nuruddin
M
,
Hosur
M
,
Gupta
R
,
Hosur
G
,
Tcherbi-Narteh
A
,
Jeelani
S.
Cellulose Nanofibers-Graphene Nanoplatelets Hybrids Nanofillers as High-Performance Multifunctional Reinforcements in Epoxy Composites
.
Polym Polym Compos
2017
;
25
:
273
84
.
4.
Georgousis
G
,
Pandis
C
,
Kalamiotis
A
,
Georgiopoulos
P
,
Kyritsis
A
,
Kontou
E
, et al
Strain sensing in polymer/carbon nanotube composites by electrical resistance measurement
.
Compos Part B Eng
2015
;
68
:
162
9
.
5.
Yu
A
,
Ramesh
P
,
Sun
X
,
Bekyarova
E
,
Itkis
M.E.
,
Haddon
R.C.
Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet – Carbon Nanotube Filler for Epoxy Composites
.
Adv Mater
2008
;
20
:
4740
4
.
6.
Chen
L
,
Pang
X.-J.
,
Yu
Z.-L.
Study on polycarbonate/multi-walled carbon nanotubes composite produced by melt processing
.
Mater Sci Eng A
2007
;
457
:
287
91
.
7.
Ghaleb
Z.A.
,
Mariatti
M
,
Ariff
Z.M.
Graphene nanoparticle dispersion in epoxy thin film composites for electronic applications: effect on tensile, electrical and thermal properties
.
J Mater Sci Mater Electron
2017
;
28
:
808
17
.
8.
Xie
S.H.
,
Liu
Y.Y.
,
Li
J.Y.
Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes
.
Appl Phys Lett
2008
;
92
:
243121
.
9.
Sadasivuni
K.K.
,
Ponnamma
D
,
Kim
J
,
Thomas
S.
Graphene-Based Polymer Nanocomposites in Electronics
.
Cham
:
Springer International Publishing
;
2015
.
10.
Liu
W
,
Wei
B
,
Xu
F.
Investigation on the mechanical and electrical properties of carbon nanotube/epoxy composites produced by resin transfer molding
.
J Compos Mater
2017
;
51
:
2035
43
.
11.
Shen
J.T.
,
Buschhorn
S.T.
,
De Hosson
J.T.M.
,
Schulte
K
,
Fiedler
B.
Pressure and temperature induced electrical resistance change in nano-carbon/epoxy composites
.
Compos Sci Technol
2015
;
115
:
1
8
.
12.
Zhang
H
,
Bilotti
E
,
Peijs
T.
The use of carbon nanotubes for damage sensing and structural health monitoring in laminated composites: a review
.
Nanocomposites
2015
;
1
:
167
84
.
13.
D257 A. Standard Test Methods for DC Resistance or Conductance of Insulating Materials,
2012
.
14.
Wang
L
,
Aslani
F.
Self-sensing performance of cementitious composites with functional fillers at macro, micro and nano scales
.
Constr Build Mater
2022
;
314
:
125679
.
15.
Ahmad
M.A.A.
,
Mohd Jamir
M.R.
,
Abdul Majid
M.S.
,
Refaai
M.R.A.
,
Meng
C.E.
,
Abu
Bakar
M.
Damage self-sensing and strain monitoring of glass-reinforced epoxy composite impregnated with graphene nanoplatelet and multiwalled carbon nanotubes
.
Nanotechnol Rev
2022
;
11
:
1977
90
.
16.
Paleari
L
,
Bragaglia
M
,
Fabbrocino
F
,
Nanni
F.
Structural Monitoring of Glass Fiber/Epoxy Laminates by Means of Carbon Nanotubes and Carbon Black Self-Monitoring Plies
.
Nanomaterials
2021
;
11
:
1543
.
17.
Esmaeili
A
,
Sbarufatti
C
,
Jiménez-Suárez
A
,
Urena
A
,
Hamouda
A.M.
Piezoresistive characterization of epoxy based nanocomposites loaded with SWCNs-DWCNs in tensile and fracture tests
.
Polym Compos
2020
;
41
:
2598
609
.
18.
Suherman
H
,
Dweiri
R
,
Mahyoedin
Y
,
Duskiardi
D.
Investigation of electrical-mechanical performance of epoxy-based nanocomposites filled with hybrid electrically conductive fillers
.
Mater Res Express
2019
;
6
:
115010
.
19.
Ahmad
W
,
Dey
B
,
Sammar
A.A.
,
Choudhury
A.
In situ synthesis of graphene oxide in multi-walled carbon nanotube hybrid-reinforced polyetherimide nanocomposites with improved electrical, mechanical and thermal properties
.
Adv Compos Mater
2020
;
00
:
1
18
.
20.
Dey
B
,
Ahmad
M.W.
,
ALMezeni
A
,
Sarkhel
G
,
Bag
D.S.
,
Choudhury
A.
Enhancing electrical, mechanical, and thermal properties of polybenzimidazole by 3D carbon nanotube@graphene oxide hybrid
.
Compos Commun
2020
;
17
:
87
96
.
21.
Joo
S.J.
,
Yu
M.H.
,
Kim
W.S.
,
Kim
H.S.
Damage detection and self-healing of carbon fiber polypropylene (CFPP)/carbon nanotube (CN) nano-composite via addressable conducting network
.
Compos Sci Technol
2018
;
167
:
62
70
.
22.
Al-Saleh
M.H.
Electrical and mechanical properties of graphene/carbon nanotube hybrid nanocomposites
.
Synth Met
2015
;
209
:
41
6
.
This content is only available via PDF.
You do not currently have access to this content.