The current study is concerned with the city of Baghdad, which extends over an area of 889 km2. It has suffered from rapid population growth in recent years, which has led to a decline in municipal services as well as a rise in the surface temperature in the summer. In this study, the variance was evaluated in the Spatio-temporal variability of land surface temperature (LST) using Landsat-8 satellite images 25, February 2016, 10 August 2016, 2 March 2018, 9 August 2018, 22 February 2021, and 8 August 2021. LST values and controlled land use/land cover (LULC) classification work was calculated using GIS 10.8 software. The maximum value recorded for the temperature was in the barren lands between 20.8° and 53.6° degrees Celsius, while in the vegetation it ranged from 14.9° to 42.15°. During the research period, the temperature difference between the lowest and maximum value in vegetation and water bodies was lower than built-up areas around 1.7°–3.7°, 6.9°-11.1° respectively and it was also lower than the bare lands about 5.9°–11.45°,11.3°-19.05°, respectively, showing that vegetation and water bodies had a favorable influence on lowering LST in the studied region. The maximum likelihood classification (MLC) method was used in the observed classification process, and high classification accuracy was obtained. The overall accuracy ranged from 95% to 99% and the kappa accuracy ranged from 0.94 to 0.99. The rate of increase in the area of vegetation during the study period between 2016 and 2021 was about 5.13%. The proportion of the area of residential areas increased by 12.95%, while the open land decreased by 15.64%, all of which made the study area environment warmer.

1.
I. R.
,
Hegazy
&
M. R.
Kaloop
,
International Journal of Sustainable Built Environment
4
(
1
),
117
124
(
2015
).
2.
F. K.
Mashee
,
A. A.
Zaeen
&
G. S.
Hadi
,
Iraqi Journal of Science
53
(
4
),
1162
1166
(
2012
).
3.
E. E.
Hassen
&
M.
Assen
,
Environmental Systems Research
6
(
1
),
1
13
(
2018
).
4.
M. J.
Nasir
,
W.
Ahmad
,
J.
Iqbal
,
B.
Ahmad
,
H. G.
Abdo
,
R.
Hamdi
&
S. M.
Bateni
,
Earth Systems and Environment
6
(
1
),
237
248
(
2022
).
5.
A. M. D. R. F.
Jardim
,
G. D. N. Araújo
Júnior
,
M. V. D.
Silva
,
A. D.
Santos
,
J. L. B. D.
Silva
, H., …
Pandorfi
&
T. G. F. D.
Silva
,
Remote Sensing
14
(
8
),
1911
(
2022
).
6.
A.
Beg
,
In MATEC Web of Conferences, EDP Sciences
162
, no.
03032
(
2018
).
7.
A.
Shiferaw
&
K. L.
Singh
,
Ethiopian Journal of Business and Economics
2
(
1
), (
2011
).
8.
C. P.
Nzoiwu
,
E. I.
Agulue
,
S.
Mbah
&
C. P.
Igboanugo
,
Journal of Geographic Information System
9
(
06
),
763
(
2017
).
9.
O. S.
Babalola
&
A. A.
Akinsanola
,
J. Remote Sens. GIS
5
(
3
),
10
4172
(
2016
).
10.
I.
Ibrahim
,
A. A.
Samah
,
R.
Fauzi
&
N. M.
Noor
,
Remote Sensing and Spatial Information Sciences
41
(
871
), (
2016
).
11.
M.
Sahana
,
R.
Ahmed
&
H.
Sajjad
,
Modeling Earth Systems and Environment
2
(
2
),
1
11
(
2016
).
12.
F.
Fathian
,
A. D.
Prasad
,
Z.
Dehghan
&
S.
Eslamian
,
International Journal of Hydrology Science and Technology
5
(
3
),
195
207
(
2015
).
13.
A.
Hussain
,
P.
Bhalla
&
S.
Palria
,
Remote Sensing and Spatial Information Sciences
40
(
8
),
1447
(
2014
).
14.
J. S.
Rawat
,
V.
Biswas
&
M.
Kumar
,
The Egyptian Journal of Remote Sensing and Space Science
16
(
1
),
111
117
(
2013
).
15.
S.
Bharath
,
K. S.
Rajan
&
T. V.
Ramachandra
,
Geoinfor Geostat: An Overview
54
(
50-78
), (
2013
).
16.
J. E.
Wasige
,
T. A.
Groen
,
E.
Smaling
&
V.
Jetten
,
International Journal of Applied Earth Observation and Geoinformation
21
(
32
42
), (
2013
).
17.
B. I.
Wahab
,
S. S.
Naif
&
M. H.
Al-Jiboori
,
Journal of Environmental Engineering and Landscape Management
30
(
1
),
179
187
(
2022
).
18.
A. K. M.
Ali
&
F. K. M.
Al Ramahi
,
Iraqi Journal of Science
,
2142
2149
(
2020
).
19.
Muttar
,
A.Q.
,
Mustafa
,
M.T.
and
Abdl
Shareef
, M.A.H.
The Impact of (DEM) Accuracy and (LC/LU) Resolution on the Watersheds Areas
.
Journal of Techniques.
4
,
1
(Mar.
2022
),
17
28
. DOI:.
20.
S.
Ridha
,
S.
Ginestet
&
S.
Lorente
,
International Journal of Engineering and Technology
10
(
2
),
108
114
(
2018
).
22.
G. C.
Hulley
,
S. J.
Hook
&
P.
Schneider
,
Remote Sensing of Environment
115
(
12
),
3758
3769
(
2011
).
23.
M. D.
King
,
Y. J.
Kaufman
,
D.
Tanré
&
T.
Nakajima
,
Bulletin of the American Meteorological society
80
(
11
),
2229
2260
(
1999
).
24.
Q. (Ed.). Weng, “
Advances in environmental remote sensing: sensors, algorithms, and applications
,”
CRC Press
(
2011
).
25.
N.
Kayet
,
K.
Pathak
,
A.
Chakrabarty
&
S.
Sahoo
,
Modeling earth systems and environment
2
(
3
),
1
10
(
2016
).
26.
U.
Avdan
&
G.
Jovanovska
,
Journal of sensors
,
2016
, (
2016
).
27.
J. A.
Barsi
,
J. R.
Schott
,
S. J.
Hook
,
N. G.
Raqueno
,
B. L.
Markham
&
R. G.
Radocinski
,
Remote Sensing
6
(
11
),
11607
11626
(
2014
).
29.
Q.
Weng
,
Lu
,
Dongsheng
&
J.
Schubring
,
Remote sensing of Environment
89
(
4
),
467
483
(
2004
).
30.
F.
Wang
,
Z.
Qin
,
C.
Song
,
L.
Tu
,
A.
Karnieli
, and
S.
Zhao
,
Remote Sensing
7
(
4
),
4268
4289
(
2015
).
31.
J. A.
Sobrino
,
J. C.
,
Jiménez-Muñoz
, &
L.
Paolini
,
Remote Sensing of environment
90
(
4
),
434
440
(
2004
).
32.
M.
Stathopoulou
&
C.
Cartalis
,
Solar Energy
81
(
3
),
358
368
(
2007
).
33.
B. L.
Markham
and
J. L.
Barker
,
International Journal of Remote Sensing
6
(
5
),
697
716
(
1985
).
34.
M. B.
Patil
,
C. G.
Desai
&
B. N.
Umrikar
,
International Journal of Geology, Earth and Environmental Sciences
2
(
3
),
189
196
(
2012
).
35.
R. G.
Congalton
,
Remote sensing of environment
37
(
1
),
35
46
(
1991
).
36.
T. J.
Ulrych
&
T. N.
Bishop
,
Reviews of Geophysics
13
(
1
),
183
200
(
1975
).
This content is only available via PDF.
You do not currently have access to this content.