Climate change in the form of changes in rainfall intensity and patterns, rising air temperatures, wind speeds and extreme events have led to a decrease in coffee yields. The consequence is that it has an impact on the state of natural resources and the economy of the peasant family. The impact of climate change on natural resources in the form of floods, erosion, fluctuations in river water discharge, loss of springs, droughts, decreased soil fertility rates, increasing critical land area, and the emergence of new disease pests in plants. Meanwhile, in the family economy, there is a tendency to lower the main crop yield, livestock mortality, delay in planting time and migration. One of the actions that can be taken in minimizing the impact of climate change is to implement an agroforestry system. The existence of shade plants through agroforestry systems can produce nitrogen so as to add soil nutrients and increase the density of food networks and can form soil biodiversity which ultimately benefits coffee plants. Soil biodiversity can improve ecosystem adaptability to climate change. Enrichment of soil biodiversity through enrichment of coffee combination crops can increase food grid density which ultimately contributes to soil fertility and ecosystem resilience to climate change.

1.
M. B.
Holland
et al, “
Mapping adaptive capacity and smallholder agriculture: Applying expert knowledge at the landscape scale
,”
Clim. Change
, vol.
141
, no.
1
, pp.
139
153
, Feb.
2017
, doi: .
2.
W.
Merga
and
D.
Alemayehu
, “
Effects of climate change on global arabica coffee (Coffea arabica L) production
,”
Greener J. Plant Breed. Crop Sci.
, vol.
7
, no.
1
, pp.
23
30
,
2019
.
3.
D.
Ademe
,
B. F.
Zaitchik
,
K.
Tesfaye
,
B.
Simane
,
G.
Alemayehu
, and
E.
Adgo
, “
Climate trends and variability at adaptation scale: Patterns and perceptions in an agricultural region of the Ethiopian Highlands
,”
Weather Clim. Extrem.
, vol.
29
, p.
100263
, Feb.
2020
, doi: .
4.
B. P.
Dufour
,
I. W.
Kerana
, and
F.
Ribeyre
, “
Effect of coffee tree pruning on berry production and coffee berry borer infestation in the Toba Highlands (North Sumatra
),”
Crop Prot.
, vol.
122
, pp.
151
158
, Feb.
2019
, doi: .
5.
L. C.
Gomes
et al, “
Soil biodiversity conservation for mitigating climate change
,”
Clim. Chang. Soil Interact.
, no.
649
, pp.
1
9
,
2020
, doi: .
6.
L. C.
Gomes
,
F. J. J. A.
Bianchi
,
I. M.
Cardoso
,
R. B. A.
Fernandes
,
E. I. F.
Filho
, and
R. P. O.
Schulte
, “
Agroforestry systems can mitigate the impacts of climate change on coffee production: A spatially explicit assessment in Brazil
,”
Agric. Ecosyst. Environ.
, vol.
294
, p.
106858
, Feb.
2020
, doi: .
7.
S.
Bakri
,
A.
Setiawan
, and
I.
Nurhaida
, “
Coffee bean physical quality: The effect of climate change adaptation behavior of shifting up cultivation area to a higher elevation
,”
Biodiversitas J. Biol. Divers.
, vol.
19
, no.
2
, pp.
413
420
, Feb.
2018
, doi: .
8.
M.
Sauvadet
et al, “
Shade trees have higher impact on soil nutrient availability and food web in organic than conventional coffee agroforestry
,”
Sci. Total Environ.
, vol.
649
, pp.
1065
1074
, Feb.
2019
, doi: .
9.
C. A.
Harvey
et al, “
The use of ecosystem-based adaptation practices by smallholder farmers in Central America
,”
Agric. Ecosyst. Environ.
, vol.
246
, pp.
279
290
, Feb.
2017
, doi: .
10.
E.
Rahn
et al, “
Opportunities for sustainable intensification of coffee agro-ecosystems along an altitudinal gradient on Mt. Elgon, Uganda
,”
Agric. Ecosyst. Environ.
, vol.
263
, pp.
31
40
, Feb.
2018
, doi: .
11.
E.
Rahn
,
P.
Vaast
,
P.
Läderach
,
P.
van Asten
,
L.
Jassogne
, and
J.
Ghazoul
, “
Exploring adaptation strategies of coffee production to climate change using a process-based model
,”
Ecol. Modell.
, vol.
371
, pp.
76
89
, Feb.
2018
, doi: .
12.
C.
Ponce
, “
Intra-seasonal climate variability and crop diversification strategies in the Peruvian Andes: A word of caution on the sustainability of adaptation to climate change
,”
World Dev.
, vol.
127
, p.
104740
, Feb.
2020
, doi: .
13.
R.
Verburg
,
E.
Rahn
,
P.
Verweij
,
M.
van Kuijk
, and
J.
Ghazoul
, “
An innovation perspective to climate change adaptation in coffee systems
,”
Environ. Sci. Policy
, vol.
97
, pp.
16
24
, Feb.
2019
, doi: .
14.
W.
Widiasih
, “Analisis risiko pada CV. Surya Mas Rubber dengan pendekatan SCOR Model,” in
Seminar Nasional Teknik Industri
,
Yogyakarta
:
Universitas Gadjah Mada
,
2017
.
15.
R.
Boer
et al, “
Managing climate risk in a major coffee-growing region of Indonesia
,”
Glob. Clim. Chang. Environ. Policy Agric. Perspect.
, pp.
147
205
,
2018
.
16.
J.
Ochieng
,
L.
Kirimi
, and
M.
Mathenge
, “
Effects of climate variability and change on agricultural production: The case of small scale farmers in Kenya
,”
NJAS Wageningen J. Life Sci.
, vol.
77
, no.
1
, pp.
71
78
, Feb.
2016
, doi: .
17.
R. E.
Bone
and
H. J.
Atkins
, “
Four new species of Cyrtandra (Gesneriaceae) from the latimojong mountains, south sulawesi
,”
Edinburgh J. Bot.
, vol.
70
, no.
3
, pp.
455
468
, Feb.
2013
, doi: .
18.
H.
Harnita
,
S.
Madjid
, and
J.
Jumadi
, “
Petani kopi bisang di Desa Tibussan Latimojong Luwu, 2013-2017
,”
J. Pattingalloang
, vol.
6
, no.
1
, pp.
120
128
, Feb.
2019
, doi: .
19.
Provincial Government of South Sulawesi
, “
Pemerintah Provinsi Sulawesi Selatan
,”
2008
. [Online]. Available: https://sulselprov.go.id. [Accessed: Aug. 17,
2023
].
20.
S. B.
Prasetyo
, “Dampak perubahan iklim terhadap produktivitas kopi robusta (Coffea robusta) di Kabupaten Malang,”
Universitas Brawijaya
,
Malang
,
2015
.
21.
J.
Iscaro
, “
The impact of climate change on coffee production in Colombia and Ethiopia
,”
Glob. Major. E-Journal
, vol.
5
, no.
1
, pp.
33
43
,
2014
.
22.
IPCC
, “
Fifth Assessment Report of the Intergovernmental Panel on Climate Change
,”
2014
. [Online]. Available: https://www.ipcc.ch. [Accessed: Aug. 17,
2023
].
23.
P.
Läderach
,
J.
Ramirez–Villegas
,
C.
Navarro-Racines
,
C.
Zelaya
,
A.
Martinez–Valle
, and
A.
Jarvis
, “
Climate change adaptation of coffee production in space and time
,”
Clim. Change
, vol.
141
, no.
1
, pp.
47
62
, Feb.
2017
, doi: .
24.
M.
Nesper
,
C.
Kueffer
,
S.
Krishnan
,
C. G.
Kushalappa
, and
J.
Ghazoul
, “
Shade tree diversity enhances coffee production and quality in agroforestry systems in the Western Ghats
,”
Agric. Ecosyst. Environ.
, vol.
247
, pp.
172
181
, Feb.
2017
, doi: .
25.
S. B.
Tumwebaze
and
P.
Byakagaba
, “
Soil organic carbon stocks under coffee agroforestry systems and coffee monoculture in Uganda
,”
Agric. Ecosyst. Environ.
, vol.
216
, pp.
188
193
, Feb.
2016
, doi: .
26.
H. N.
de Souza
et al, “
Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome
,”
Agric. Ecosyst. Environ.
, vol.
146
, no.
1
, pp.
179
196
, Feb.
2012
, doi: .
27.
E.
Barrios
et al, “
Contribution of trees to the conservation of biodiversity and ecosystem services in agricultural landscapes
,”
Int. J. Biodivers. Sci. Ecosyst. Serv. Manag.
, vol.
14
, no.
1
, pp.
1
16
, Feb.
2018
, doi: .
This content is only available via PDF.
You do not currently have access to this content.