A spectrophotometric technique was developed utilizing Ethyl4-(5-acetyl-2,3,4-trihydroxyphenyl) diazenyl benzoate (EATDB) as a chromogenic agent for the identification of cobalt (II) ions at pH 9. Extensive investigations were conducted to assess the effects of pH, time, temperature, ionic strength, sequence of addition, and reagent concentrations on complex formation. The concentration range of cobalt (II) ions conforming to Beer’s Law was determined as 1-100 µg.mL−1 under optimized conditions. The resulting complex exhibited maximum absorption at 437 nm with a molar absorptivity of 0.212x10³ L mol⁻¹ cm⁻¹. The limits of quantification and detection were established as 1.4 µg.mL−1 and 0.425 µg.mL−1, respectively. The stoichiometric ratio of the chelate [M:L] was determined to be 1:2 [Co-EATDB]. The developed method was successfully applied for the determination of Cobalt (II) complex ions in Vitamin B12.

1.
M. S.
Centre
, “
Modified method for the determination of cobalt (II) and copper (II) ions by adopting schiff base complexes in water of Shatt Al-Arab river
,”
Mesopot. J. Mar. Sci
., vol.
26
, no.
2
, pp.
170
181
,
2011
, doi: .
2.
D. G.
Santarossa
and
L. P.
Fernández
, “
Development of on-line spectrofluorimetric methodology for selenium monitoring in foods and biological fluids using Chrome azurol S quenching
,”
Talanta
, vol.
172
, no. May, pp.
31
36
,
2017
, doi: .
3.
J.
Chen
and
K. C.
Teo
, “
Determination of cobalt and nickel in water samples by flame atomic absorption spectrometry after cloud point extraction
,”
Anal. Chim. Acta
, vol.
434
, no.
2
, pp.
325
330
,
2001
, doi: .
4.
M. B.
Arain
,
E.
Yilmaz
, and
M.
Soylak
, “
Deep eutectic solvent based ultrasonic assisted liquid phase microextraction for the FAAS determination of cobalt
,”
J. Mol. Liq
., vol.
224
, pp.
538
543
,
2016
, doi: .
5.
M. R.
Jamali
,
B.
Soleimani
,
R.
Rahnama
, and
S. H. A.
Rahimi
, “
Development of an in situ solvent formation microextraction and preconcentration method based on ionic liquids for the determination of trace cobalt (II) in water samples by flame atomic absorption spectrometry
,”
Arab. J. Chem
., vol.
10
, pp.
S321
S327
,
2017
, doi: .
6.
N. K.
Temel
,
K.
Sertakan
, and
R.
Gürkan
, “
Preconcentration and determination of trace nickel and cobalt in milk-based samples by ultrasound-assisted cloud point extraction coupled with flame atomic absorption spectrometry
,”
Biol. Trace Elem. Res
., vol.
186
, no.
2
, pp.
597
607
,
2018
, doi: .
7.
N.
Wang
,
Z. X.
Liu
,
R. S.
Li
,
H. Z.
Zhang
,
C. Z.
Huang
, and
J.
Wang
, “
The aggregation induced emission quenching of graphene quantum dots for visualizing the dynamic invasions of cobalt(II) into living cells
,”
J. Mater. Chem. B
, vol.
5
, no.
31
, pp.
6394
6399
,
2017
, doi: .
8.
C.
Zhao
,
X.
Li
,
C.
Cheng
, and
Y.
Yang
, “
Green and microwave-assisted synthesis of carbon dots and application for visual detection of cobalt(II) ions and pH sensing
,”
Microchem. J
., vol.
147
, no. January, pp.
183
190
,
2019
, doi: .
9.
Y.
Yao
,
D.
Tian
, and
H.
Li
, “
Cooperative binding of bifunctionalized and click-synthesized silver nanoparticles for colorimetric Co2+ Sensing
,”
ACS Appl. Mater. Interfaces
, vol.
2
, no.
3
, pp.
684
690
,
2010
, doi: .
10.
D.
Maity
and
T.
Govindaraju
, “
Highly selective colorimetric chemosensor for Co2+
,”
Inorg. Chem
., vol.
50
, no.
22
, pp.
282
284
,
2011
, doi: .
11.
Y.
Shiraishi
,
Y.
Matsunaga
, and
T.
Hirai
, “
Selective colorimetric sensing of Co(ii) in aqueous media with a spiropyran-amide-dipicolylamine linkage under UV irradiation
,”
Chem. Commun
., vol.
48
, no.
44
, pp.
5485
5487
,
2012
, doi: .
12.
L.
Nenni
and
M.
Amara
, “
A Multi-line analysis by ICP/OES of cobalt in complex solutions at different instrument setting
,”
Anal. Chem. ACAIJ
, vol.
11
, no.
7
,8, pp.
407
412
,
2012
.
13.
M. R.
Awual
,
M.
Ismael
, and
T.
Yaita
, “
Efficient detection and extraction of cobalt(II) from lithium ion batteries and wastewater by novel composite adsorbent
,”
Sensors Actuators, B Chem
., vol.
191
, no.
Ii
, pp.
9
18
,
2014
, doi: .
14.
Heena
,
R.
Kaur
,
S.
Rani
,
A. K.
Malik
,
A.
Kabir
, and
K. G.
Furton
, “
Determination of cobalt(II), nickel(II) and palladium(II) Ions via fabric phase sorptive extraction in combination with high-performance liquid chromatography-UV detection
,”
Sep. Sci. Technol
., vol.
52
, no.
1
, pp.
81
90
,
2017
, doi: .
15.
T.
da Silva Magalhães
and
B. F.
Reis
, “
A Sensitive Photometric Procedure for Cobalt Determination in Water Employing a Compact Multicommuted Flow Analysis System
,”
Appl. Spectrosc
., vol.
71
, no.
9
, pp.
2154
2163
,
2017
, doi: .
16.
P.
Tripathi
and
M.
Chaudhuri
, “
Decolourisation of metal complex azo dyes and treatment of a dyehouse waste by modified photo-Fenton (UV-vis/ferrioxalate/H2O2) process
,”
Indian J. Eng. Mater. Sci
., vol.
11
, no.
6
, pp.
499
504
,
2004
.
17.
A.
Gičević
,
L.
Hindija
, and
A.
Karačić
, “
Toxicity of azo dyes in pharmaceutical industry
,”
IFMBE Proc
., vol.
73
, pp.
581
587
,
2020
, doi: .
18.
W.
Boumya
,
M.
Achak
,
M.
Bakasse
, and
M. A.
El Mhammedi
, “
Indirect determination of dopamine and paracetamol by electrochemical impedance spectroscopy using azo coupling reaction with oxidized 2,4-dinitrophenylhydrazine (DNPH): Application in commercial tablets
,”
J. Sci. Adv. Mater. Devices
, vol.
5
, no.
2
, pp.
218
223
,
2020
, doi: .
19.
H.
Mutlu
,
C. M.
Geiselhart
, and
C.
Barner-Kowollik
, “
Untapped potential for debonding on demand: The wonderful world of azo-compounds
,”
Mater. Horizons
, vol.
5
, no.
2
, pp.
162
183
,
2018
, doi: .
20.
S. H.
Liu
,
C. R.
Cao
,
W. C.
Lin
, and
C. M.
Shu
, “
Experimental and numerical simulation study of the thermal hazards of four azo compounds
,”
J. Hazard. Mater
., vol.
365
, pp.
164
177
,
2019
, doi: .
21.
C. R.
Cao
and
S. H.
Liu
, “
Thermal hazard characteristic evaluation of two low-temperature-reactive azo compounds under adiabatic process conditions
,”
Process Saf. Environ. Prot
., vol.
130
, pp.
231
237
,
2019
, doi: .
22.
B.
Derkowska-Zielinska
et al, “
Functionalized polymers with strong push-pull azo chromophores in side chain for optical application
,”
Opt. Mater. (Amst)
., vol.
85
, no. July, pp.
391
398
,
2018
, doi: .
23.
A.
Matei
et al, “
Laser printing of azo-derivative thin films for non-linear optical applications
,”
Appl. Surf. Sci
., vol.
336
, pp.
200
205
,
2015
, doi: .
24.
V. Y.
Chang
,
C.
Fedele
,
A.
Priimagi
,
A.
Shishido
, and
C. J.
Barrett
, “
Photoreversible Soft Azo Dye Materials: Toward Optical Control of Bio-Interfaces
,”
Adv. Opt. Mater
., vol.
7
, no.
16
, pp.
1
25
,
2019
, doi: .
25.
S.
Prakash
et al, “
Synthesis and characterization of novel bioactive azo compounds fused with benzothiazole and their versatile biological applications
,”
J. Mol. Struct
., vol.
1224
, p.
129016
,
2021
, doi: .
26.
S.
Crespi
,
N. A.
Simeth
, and
B.
König
, “
Heteroaryl azo dyes as molecular photoswitches
,”
Nat. Rev. Chem
., vol.
3
, no.
3
, pp.
133
146
,
2019
, doi: .
27.
R. I.
Alsantali
et al, “
Miscellaneous azo dyes: a comprehensive review on recent advancements in biological and industrial applications
,”
Dye. Pigment
., vol.
199
, p.
110050
,
2022
, doi: .
28.
Arthur I.
Vogel
,
A TEXT BOOK OF PRACTICAL ORGANIC CHEMISTRY
, 3RD ed.
LONDON
:
Longman Group Limited
,
1962
. doi: .
29.
C.
Concentrations
and
S. K.
Inhabitants
, “
Archive of SID Manganese and Cobalt Concentrations in Hair and Nail Archive of SID
,”
Distribution
, vol.
4
, no.
2
, pp.
333
340
,
2010
.
30.
N. N.
Greenwood
and
A.
Earnshaw
,
Chemistry of the Elements
, 2nd ed.
Butterworth-Heinemann
,
1997
.
31.
M. H.
Atiyah
and
A. F.
Hussain
, “
Spectrophotometric determination of micro amount of copper (II) using a new of (AZO) derivative, study of thermodynamic functions and their analytical application
,”
Syst. Rev. Pharm
., vol.
11
, no.
10
, pp.
171
181
,
2020
, doi: .
32.
N. S.
Suhaimi
,
J.
Mountstephens
, and
J.
Teo
, “
EEG-Based Emotion Recognition: A State-of-the-Art Review of Current Trends and Opportunities
,”
Comput. Intell. Neurosci
., vol.
2020
,
2020
, doi: .
33.
S. A.
Tirmizi
,
F. H.
Wattoo
,
M. H. S.
Wattoo
,
S.
Sarwar
,
A. N.
Memon
, and
A. B.
Ghangro
, “
Spectrophotometric study of stability constants of cimetidine-Ni(II) complex at different temperatures
,”
Arab. J. Chem
., vol.
5
, no.
3
, pp.
309
314
,
2012
, doi: .
34.
A. T.
Syed
,
M. H. S.
Wattoo
,
S.
Sarwar
, and
W.
Anwar
, “
SPECTROPHOTOMETRIC STUDY OF STABILITY CONSTANTS OF FAMOTIDINE-Cu(II) COMPLEX AT DIFFERENT TEMPERATURES
,”
Arab. J. Sci. Eng
., vol.
34
, no.
2
A, pp.
44
47
,
2009
.
35.
Ronak
Ali
et al
2020
J. Phys.: Conf. Ser
.
1530
012156
.
This content is only available via PDF.
You do not currently have access to this content.