This paper deals with the study of nonlinear oscillations of an electromagnetically actuated beam, taking into account the van der Waals force. The governing differential equation of motion is solved implementing Taylor series and Galerkin procedure, and then applying the Optimal Homotopy Asymptotic Method (OHAM). Our technique is very accurate, simple, and effective using only the first iteration.

1.
J.F.
Rhoads
,
S.W.
Shaw
,
K.L.
Turner
,
J. Micromech. Microeng
.
16
,
890
899
(
2006
).
2.
B.
Gospodaric
,
D.
Voncina
,
B.
Bucar
,
Mechatronics
17
,
291
298
(
2007
).
3.
W.H.
Lin
,
Y.P.
Zhao
,
Sensors
7
,
3012
3026
(
2007
).
4.
C. S.
Harsha
,
C.S.
Prasanth
,
B.
Pratiher
,
Procedia. Eng
.
144
,
891
899
(
2016
).
5.
B.
Wang
,
S.
Zhou
,
J.
Zhao
,
X.
Chen
,
J. Micromech. Microeng
21
,
027001
(
2011
).
6.
N.E.
Kahveci
,
I.V.
Kolmanovsky
,
IFAC Proceedings
43
,
393
398
(
2010
).
7.
H.
Li
,
Int. J. Mechatronics. Appl. Mech
.
8
,
182
189
(
2020
).
8.
9.
N.
Herisanu
,
V.
Marinca
,
G.
Madescu
,
AIP Conference Proceedings
,
1863
, Art.No.
460002
(
2017
)
10.
V.
Marinca
,
N.
Herisanu
,
AIP Conference Proceedings
,
2116
, Art.No.
300003
(
2019
)
11.
N.
Herisanu
,
V.
Marinca
,
MATEC Web of Conferences
,
148
, Art.No.
13003
(
2018
)
12.
N.
Herisanu
,
V.
Marinca
,
AIP Conf. Proc
.
1978
,
310003
(
2018
).
This content is only available via PDF.
You do not currently have access to this content.