In this study the nonlinear vibrations of an electromagnetic actuated cantilever are explored. The nonlinear differential equation is solved by means of the Optimal Homotopy Asymptotic Method (OHAM). Comparisons between results obtained using our procedure and those of numerical integration show the effectiveness and reliability of our approach.

1.
N.E.
Kahveci
,
I.V.
Kolmanovsky
,
IFAC Proceedings Volumes
43
,
393
398
(
2010
).
2.
H.S.
Haghighi
,
A.H.D.
Markazi
,
Commun. Nonlin. Sci. Numer. Simul
.
15
,
3091
3099
(
2010
).
3.
H. T.
Yau
,
C.C.
Wang
,
C.T.
Hsieh
,
C.C.
Cho
,
Comput. Math. Appl
.
61
,
1912
1916
(
2011
).
4.
M.
Belhaq
,
A.
Bichri
,
J.
Der Hogapian
,
J.
Mahfoud
,
Int. J. Non-Linear Mech
.
46
,
481
488
(
2013
).
5.
S.
Kong
,
Appl. Math. Model
.
37
,
7481
7488
(
2013
).
6.
L.
Yin
,
Q.
Qian
,
L.
Wang
,
Acta. Mech. Sin
.
27
,
445
451
(
2011
).
7.
A.
Bichri
,
M.
Belhaq
,
J.P.
Liaudet
,
J. Comput. Nonl. Dynamics
10
,
064501
(
2015
).
8.
A.
Bichri
,
J.
Mahfoud
,
M.
Belhaq
,
J. Vibr. Testing and Syst. Dynamics
2
,
1
8
(
2018
).
9.
N.
Herisanu
,
V.
Marinca
,
AIP Conf. Proc
.
1978
,
310003
(
2018
).
10.
N.
Herisanu
,
V.
Marinca
,
G.
Madescu
,
AIP Conf. Proc
.
1863
,
460002
(
2017
).
11.
N.
Herisanu
,
V.
Marinca
,
MATEC Web Conf
.
148
,
13003
(
2018
).
12.
V.
Marinca
,
N.
Herisanu
,
AIP Conf. Proc
.
2116
,
300003
(
2019
).
This content is only available via PDF.
You do not currently have access to this content.