In this study the nonlinear vibrations of an electromagnetic actuated cantilever are explored. The nonlinear differential equation is solved by means of the Optimal Homotopy Asymptotic Method (OHAM). Comparisons between results obtained using our procedure and those of numerical integration show the effectiveness and reliability of our approach.
REFERENCES
1.
N.E.
Kahveci
, I.V.
Kolmanovsky
, IFAC Proceedings Volumes
43
, 393
–398
(2010
).2.
H.S.
Haghighi
, A.H.D.
Markazi
, Commun. Nonlin. Sci. Numer. Simul
. 15
, 3091
–3099
(2010
).3.
H. T.
Yau
, C.C.
Wang
, C.T.
Hsieh
, C.C.
Cho
, Comput. Math. Appl
. 61
, 1912
–1916
(2011
).4.
M.
Belhaq
, A.
Bichri
, J.
Der Hogapian
, J.
Mahfoud
, Int. J. Non-Linear Mech
. 46
, 481
–488
(2013
).5.
S.
Kong
, Appl. Math. Model
. 37
, 7481
–7488
(2013
).6.
L.
Yin
, Q.
Qian
, L.
Wang
, Acta. Mech. Sin
. 27
, 445
–451
(2011
).7.
A.
Bichri
, M.
Belhaq
, J.P.
Liaudet
, J. Comput. Nonl. Dynamics
10
, 064501
(2015
).8.
A.
Bichri
, J.
Mahfoud
, M.
Belhaq
, J. Vibr. Testing and Syst. Dynamics
2
, 1
–8
(2018
).9.
N.
Herisanu
, V.
Marinca
, AIP Conf. Proc
. 1978
, 310003
(2018
).10.
N.
Herisanu
, V.
Marinca
, G.
Madescu
, AIP Conf. Proc
. 1863
, 460002
(2017
).11.
N.
Herisanu
, V.
Marinca
, MATEC Web Conf
. 148
, 13003
(2018
).12.
V.
Marinca
, N.
Herisanu
, AIP Conf. Proc
. 2116
, 300003
(2019
).
This content is only available via PDF.
© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.