We present an adaptive algorithm for bivariate interpolation of irregularly distributed points. The adaptive scheme is based on the radial basis function (RBF) partition of unity method, which is particularly suitable for the interpolation of a large number of points. By this technique we can decompose the entire domain into several subdomains of variable size, so that the algorithm can be applied successfully on highly varying point distributions. The use of efficient searching procedures together with a maximum likelihood estimation criterion enables us a fast and accurate computation of the RBF partition of unity interpolant. Numerical results show good performance of this adaptive algorithm.

1.
M.D.
Buhmann
, Radial Basis Functions: Theory and Implementation,
Cambridge Monogr. Appl. Comput. Math
., vol.
12
,
Cambridge Univ. Press
,
Cambridge
,
2003
.
2.
R.
Cavoretto
,
Adaptive radial basis function partition of unity interpolation: A bivariate algorithm for un-structured data
,
J. Sci. Comput
.
87
(
2021
),
41
.
3.
R.
Cavoretto
,
A.
De Rossi
,
Error indicators and refinement strategies for solving Poisson problems through a RBF partition of unity collocation scheme
,
Appl. Math. Comput
.
369
(
2020
),
124824
.
4.
R.
Cavoretto
,
A.
De Rossi
,
W.
Erb
,
Partition of unity methods for signal processing on graphs
,
J. Fourier Anal. Appl
.
27
(
2021
),
66
.
5.
R.
Cavoretto
,
A.
De Rossi
,
M.S.
Mukhametzhanov
,
Ya.D.
Sergeyev
,
On the search of the shape parameter in radial basis functions using univariate global optimization methods
,
J. Global Optim
.
79
(
2021
),
305
327
.
6.
G.E.
Fasshauer
, Meshfree Approximation Methods with Matlab,
Interdisciplinary Mathematical Sciences
, vol.
6
,
World Scientific Publishing Co.
,
Singapore
,
2007
.
7.
G.
Fasshauer
,
M.
McCourt
, Kernel-based Approximation Methods using Matlab, Interdisciplinary Mathematical Sciences, vol.
19
,
World Scientific
,
Singapore
,
2015
.
8.
G.
Garmanjani
,
R.
Cavoretto
,
M.
Esmaeilbeigi
,
A RBF partition of unity collocation method based on finite difference for initial-boundary value problems
,
Comput. Math. Appl
.
75
(
2018
),
4066
4090
.
9.
A.
Safdari-Vaighani
,
A.
Heryudono
,
E.
Larsson
,
A radial basis function partition of unity collocation method for convection-diffusion equations
,
J. Sci. Comput
.
64
(
2015
),
341
367
.
10.
M.
Scheuerer
,
An alternative procedure for selecting a good value for the parameter c in RBF-interpolation
,
Adv. Comput. Math
.
34
(
2011
),
105
126
.
11.
H.
Wendland
, Fast evaluation of radial basis functions: Methods based on partition of unity, in:
Chui
,
C.K.
,
Schumaker
,
L.L.
,
Stöckler
,
J.
(eds.)
Approximation Theory X: Wavelets, Splines, and Applications
,
Vanderbilt Univ. Press
,
Nashville, TN
,
2002
, pp.
473
483
.
12.
H.
Wendland
, Scattered Data Approximation,
Cambridge Monogr. Appl. Comput. Math
., vol.
17
,
Cambridge Univ. Press
,
Cambridge
,
2005
.
This content is only available via PDF.
You do not currently have access to this content.