Weighted Bergman projections on the monogenic Bergman spaces over the real ball of ℝn have been already studied in a paper of Ren and Malonek. We extend and generalize their results by considering more general Bergman operators and stating a necessary and sufficient condition for them to be bounded in weighted Lebesgue spaces. Sharp estimates for the weighted monogenic Bergman kernel are also given.

1.
K.L.
Avetisyan
,
Continuous inclusions and Bergman type operators in n-harmonic mixed norm spaces on the polydisc
,
J. Math. Anal. Appl
.
291
,
727
740
(
2004
).
2.
F.
Brackx
,
R.
Delanghe
and
F.
Sommen
,
Clifford Analysis
(
Research Notes in Mathematics
, 76, Pitman,
Boston, MA
,
1982
).
3.
F.
Brackx
,
F.
Sommen
and
N.
Van Acker
,
Reproducing Bergman kernels in Clifford analysis
,
Complex Vari-ables Theory Appl
.
24
, no.
3-4
,
191
204
(
1994
).
4.
B.R.
Choe
,
H.
Koo
and
Y.J.
Lee
,
Positive Schatten class Toeplitz operators on the ball
,
Studia Math
.
189
,
65
90
(
2008
).
5.
B.R.
Choe
,
H.
Koo
and
K.
Nam
,
Optimal norm estimate of operators related to the harmonic Bergman projection on the ball
,
Tohoku Math. J
.
62
,
357
374
(
2010
).
6.
A.E.
Djrbashian
,
Integral representations for Riesz systems in the unit ball and some applications
,
Proc. Amer. Math. Soc
.
117
,
395
403
(
1993
).
7.
A.E.
Djrbashian
and
F.A.
Shamoian
,
Topics in the Theory of Ap Spaces
(
Teubner-Texte zur Math.
, b.
105
,
Teubner, Leipzig
,
1988
).
8.
K.
Gürlebeck
,
K.
Habetha
and
W.
Sprössig
,
Holomorphic Functions in the Plane and n-dimensional Space
(
Birkhäuser Verlag
,
Basel
,
2008
).
9.
K.
Gürlebeck
,
K.
Habetha
and
W.
Sprössig
,
Applications of Holomorphic Functions in Two and Higher Dimensions
(
Birkhäuser, Springer
,
Switzerland
,
2016
).
10.
M.
Jevtić
and
M.
Pavlović
,
Harmonic Bergman functions on the unit ball in
Rn, Acta Math. Hungar
.
85
,
81
96
(
1999
).
11.
G.
Ren
,
Harmonic Bergman spaces with small exponents in the unit ball
,
Collect. Math
.
53
,
83
98
(
2002
).
12.
G.
Ren
and
U.
Kähler
,
Weighted harmonic Bloch spaces and Gleason’s problem
,
Complex Variables Theory Appl
.
48
,
235
245
(
2003
).
13.
G.
Ren
and
H.R.
Malonek
, ”Bergman projection in Clifford analysis”, in:
Clifford algebras
(
Cookeville, TN
,
2002
),
(
Prog. Math. Phys
.,
34
,
Birkhäuser
,
Boston, MA
,
2004
), pp.
125
139
.
14.
P.
Van Lancker
, ”
Clifford analysis on the sphere
”, in:
Clifford algebras and their application in mathematical physics, Proc. 4th conf., Aachen, Germany, May 28-31, 1996
, edited by
V.
Dietrich
et al. (
Dordrecht, Kluwer
,
Fundam. Theor. Phys
.
94
,
1998
), pp.
201
215
.
15.
K.
Zhu
, Spaces of holomorphic functions in the unit ball (
Graduate Texts in Math
., vol.
226
,
Springer-Verlag
,
New York
,
2005
).
This content is only available via PDF.
You do not currently have access to this content.