Weighted Bergman projections on the monogenic Bergman spaces over the real ball of ℝn have been already studied in a paper of Ren and Malonek. We extend and generalize their results by considering more general Bergman operators and stating a necessary and sufficient condition for them to be bounded in weighted Lebesgue spaces. Sharp estimates for the weighted monogenic Bergman kernel are also given.
REFERENCES
1.
K.L.
Avetisyan
, Continuous inclusions and Bergman type operators in n-harmonic mixed norm spaces on the polydisc
, J. Math. Anal. Appl
. 291
, 727
–740
(2004
).2.
F.
Brackx
, R.
Delanghe
and F.
Sommen
, Clifford Analysis
(Research Notes in Mathematics
, 76, Pitman, Boston, MA
, 1982
).3.
F.
Brackx
, F.
Sommen
and N.
Van Acker
, Reproducing Bergman kernels in Clifford analysis
, Complex Vari-ables Theory Appl
. 24
, no. 3-4
, 191
–204
(1994
).4.
B.R.
Choe
, H.
Koo
and Y.J.
Lee
, Positive Schatten class Toeplitz operators on the ball
, Studia Math
. 189
, 65
–90
(2008
).5.
B.R.
Choe
, H.
Koo
and K.
Nam
, Optimal norm estimate of operators related to the harmonic Bergman projection on the ball
, Tohoku Math. J
. 62
, 357
–374
(2010
).6.
A.E.
Djrbashian
, Integral representations for Riesz systems in the unit ball and some applications
, Proc. Amer. Math. Soc
. 117
, 395
–403
(1993
).7.
A.E.
Djrbashian
and F.A.
Shamoian
, Topics in the Theory of Ap Spaces
(Teubner-Texte zur Math.
, b. 105
, Teubner, Leipzig
, 1988
).8.
K.
Gürlebeck
, K.
Habetha
and W.
Sprössig
, Holomorphic Functions in the Plane and n-dimensional Space
(Birkhäuser Verlag
, Basel
, 2008
).9.
K.
Gürlebeck
, K.
Habetha
and W.
Sprössig
, Applications of Holomorphic Functions in Two and Higher Dimensions
(Birkhäuser, Springer
, Switzerland
, 2016
).10.
M.
Jevtić
and M.
Pavlović
, Harmonic Bergman functions on the unit ball in
Rn, Acta Math. Hungar
. 85
, 81
–96
(1999
).11.
G.
Ren
, Harmonic Bergman spaces with small exponents in the unit ball
, Collect. Math
. 53
, 83
–98
(2002
).12.
G.
Ren
and U.
Kähler
, Weighted harmonic Bloch spaces and Gleason’s problem
, Complex Variables Theory Appl
. 48
, 235
–245
(2003
).13.
G.
Ren
and H.R.
Malonek
, ”Bergman projection in Clifford analysis”, in: Clifford algebras
(Cookeville, TN
, 2002
),(
Prog. Math. Phys
., 34
, Birkhäuser
, Boston, MA
, 2004
), pp. 125
–139
.14.
P.
Van Lancker
, ”Clifford analysis on the sphere
”, in: Clifford algebras and their application in mathematical physics, Proc. 4th conf., Aachen, Germany, May 28-31, 1996
, edited by V.
Dietrich
et al. (Dordrecht, Kluwer
, Fundam. Theor. Phys
. 94
, 1998
), pp. 201
–215
.15.
K.
Zhu
, Spaces of holomorphic functions in the unit ball (Graduate Texts in Math
., vol. 226
, Springer-Verlag
, New York
, 2005
).
This content is only available via PDF.
© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.