Fusion welding is less effective when joining dissimilar materials like copper and aluminum because it results in compaction flaws like porosity and hot cracking. The solid-state welding method, or welding in a solid state, is more effective in this case because combining aluminum and copper materials with the solid state can reduce metallurgical processes that happen at high temperatures. A5005 aluminum and C10100 copper plates with dimensions of 150 mm × 150 mm × 3 mm were the materials employed in this work. The St 90 high carbon steel utilized for the friction stir welding (FSW) welding tool has dimensions of 18 mm for the shoulder diameter and 4 mm for the pin diameter. The FSW dissimilar aluminum-copper welding process was carried out using the Aciera AS 1 milling machine, with welding speed variations of 25 mm/min, 50 mm/min, 75 mm/min, and 100 mm/min. Other process parameters, such as pin geometry and rotational speed, are held constant in a cilynder form and around 910 rpm, respectively. Afterward the dissimilar aluminum 5005 and copper welded joint was evaluated by several testing. These tests included tensile testing according to the ASTM E8 standard, hardness testing, and metallography testing. According to the findings of this study, the hardness value in the HAZ and stir zone increases with the welding speed used. The aluminum HAZ, copper HAZ, and stir zone all recorded values of 42.7 VHN, 55.9 VHN, and 68.9 VHN, respectively, for the highest hardness value at a variation of 100 mm/min. The joint strength increases with increasing welding speed, reaching up to 43.66 MPa at 75 mm/minute welding speed with minimal weld defect, after which the strength decreases with increasing welding speed.

1.
A.
Boucherit
,
M.
Avettand-fènoël
and
R.
Taillard
,
Materials & Design
124
(
2897
),
87
99
(
2017
).
2.
L.
Liu
,
H.
Wang
,
G.
Song
and
J.
Ye
,
Journal of Materials Science
42
,
565
572
(
2007
).
3.
M. F. X.
Muthu
and
V.
Jayabalan
,
Journal of Materials Processing Technology
217
,
105
113
(
2015
).
4.
R. I.
Rodriguez
,
J. B.
Jordon
,
P. G.
Allison
,
T.
Rushing
, and
L.
Garcia
,
Material & Design
83
,
60
65
(
2015
).
5.
P.
Kannan
,
K.
Balamurugan
, and
K.
Thirunavukkarasu
,
Indian Journal of Engineering & Materials Sciences
21
,
635
646
(
2014
).
6.
H.
Bisadi
,
A.
Tavakoli
,
M. T.
Sangsaraki
and
K. T.
Sangsaraki
,
Materials & Design
43
,
80
88
(
2013
).
7.
P.
Pourahmad
and
M.
Abbasi
,
Transactions. Nonferrous Metals. Society of China
23
(
5
),
1253
1261
(
2013
).
8.
B.
Li
,
Z.
Zhang
,
Y.
Shen
,
W.
Hu
, and
L.
Luo
,
Material & Design
53
,
838
848
(
2014
).
9.
W. Y.
Li
,
T.
Fu
,
L.
Hutsch
,
J.
Hilgert
,
F. F.
Wang
,
J. F. dos
Santos
, and
N.
Huber
,
Material & Design
64
,
714
720
(
2014
).
10.
W.
Jatimurti
,
F.
Kurniawan
and
B. A.
Kurniawan
,
Engine
3
(
2
),
39
46
(
2019
).
11.
N.
Osman
,
Z.
Sajuri
,
A. H.
Baghdadi
and
M. Z.
Omar
,
METALS
9
(
11
),
1159
(
2019
).
12.
S. A.
Khodir
,
M. M. Z.
Ahmed
,
E.
Ahmed
,
S. M. R.
Mohamed
and
H.
Abdel-Aleem
,
Journal of Materials Engineering and Performance
25
,
4637
4648
(
2016
).
13.
ASM International the Materials Information Company
,
Volume 2 Properties and Selection: Nonferrous alloys and special-purpose materials
,
United States of America: ASM Internasional
, (
1990
).
14.
A. I.
Albannai
,
International Journal of Scientific & Technology Research
9
,
318
329
(
2020
).
15.
K. P.
Mehta
and
V. J.
Badheka
,
Materials and Manufacturing Processes
31
(
3
),
233
254
(
2015
).
16.
I.
Helmi
and
Tarmizi
,
Journal of Industrial Technology Research
11
(
1
),
31
35
(
2017
).
17.
S.
Rajakumar
and
V.
Balasubramania
,
Material & Design
34
,
242
251
(
2012
).
18.
P.
Xue
,
G.
Xie
,
B.
Xiao
,
Z.
Ma
and
L.
Geng
,
Metallurgical and Materials Transactions
,
41
(
8
)
2010
2021
(
2010
).
19.
T. H.
Derniawan
,
N.
Nurdin
and
F.
Fakhriza
,
Journal of Welding Technology
3
(
1
),
12
16
(
2021
).
20.
C.Y.
Chen
,
H.-L.
Chen
and
W.-S.
Hwang
,
Materials Transactions
47
(
4
),
1232
1239
(
2006
).
This content is only available via PDF.
You do not currently have access to this content.