Permanent magnet brushless DC (BLDC) motors, stepper motors, and frequency converter motors are all examples of up-to-date electric motor technology. They are made possible by the vast improvement in solid-state circuits s and equipment, as well as the great development in building material technologies. Brushless DC (BLDC) motors are quickly becoming the standard for cutting-edge applications. It is the most sought-after engine for a wide range of uses because of its minimal upkeep needs, small size, quiet operation, and high efficiency values. The BLDC motor’s direct injection ratio of torque to volume is also improved. Because of its benefits, it may be used in situations where portability and compactness are of paramount importance. In any sensor mode, these gadgets may be monitored. or sensor-less form, but sensor-less control methods are typically used to reduce the overall cost per engine. This document provides a brief overview of the various BLDC motor management methods currently in use.

1.
H.
Chen
et al., “
The effects of climate change and human activities on biogeochemical cycles in the Qinghai Tibetan Plateau
,”
Global change biology
, vol.
19
, no.
10
, pp.
2940
2955
,
2013
.
2.
M.-H.
Hwang
,
H.-S.
Lee
,
S.-H.
Yang
,
H.-R.
Cha
, and
S.-J.
Park
.
Electromagnetic field study and design of a low-speed exterior rotor inductor for operating electric cars
.
2019
,
12
:
4615
. [CrossRef]
3.
Lee
,
B.-C.
,
Song
,
C.-H.
,
Kim
,
D.-H.
, and
Kim
,
K.-C.
Process development and feature analysis for BLDC motor design with dual rotor construction and high power density are being investigated
.
6745
,
13
,
Energies
2020
. [CrossRef]
4.
M.
Cheng
,
L.
Sun
,
G.
Buja
, and
L.
Song
.
Advanced electrical machinery and machine-based systems for electric and hybrid cars
.
Energies
,
8
,
9541
9564
(
2015
). [CrossRef]
5.
Anuja
,
T.
, and
M.
Doss
.
Reducing cogging torque in a surface-mounted permanent magnet brushless DC motor by adjusting the magnetic movement of the rotor
.
2021
,
14
,
2861
. [CrossRef]
6.
M.
Korkosz
,
J.
Prokop
,
B.
Pakla
,
G.
Podskarbi
, and
P.
Bogusz
.
Open-circuit failure analysis in fault-tolerant BLDC motors with various coil designs
.
2020
,
13
,
5320
. [CrossRef]
Yoon
,
K.-Y.
, and
S.-W.
Baek
.
For electric oil pumps with BLDC motors, robust design optimization with a punishment mechanism is used
.
12
,
153
.
Energies
2019
. [CrossRef]
He
,
C.
, and
T.
Wu
.
Electric impact tool device with permanent magnet brushless DC motor and mechanical structure design
.
11
,
1360
(
2018
,
Energies)
. [CrossRef]
7.
Stephan
,
D.
,
Annette
,
M.
, and
Gerhard
,
S.
Small single-phase permanent magnet brushless DC motors for fan uses have design limitations
.
IEEE Transactions on Industrial Applications
,
51
,
3178
3186
,
2015
.
8.
Zhang
J.
,
Cheng
M.
,
Hua
W.
(
2010
) Calculation of cogging torque for stator interior permanent magnet machine.
14th Biennial IEEE Conference on Electromagnetic Field Computation CEFC’10
,
Chicago, USA
.
9.
Li
,
H.
The Effects of Permanent Magnet Segmentations onElectromagnetic Performance in Ironless Brushless DC Motors
(
2018
)
10.
Ozgur Ustun On Field Weakening Performance of a BrushlessDirect Current Motor with Higher Winding Inductance: Why Does Design Matter
(
2018
)
11.
Yogesh Singh
Barod
,
Alka Thakur Mathematical Modelling and Analysis of BLDC Motor for Vibration and Noise Effect Along with Current Variation
(
2018
)
12.
Wu
Q.
,
Tıan
W.
(
2012
)
Design of permanent magnet brushless DA motor control system based on dsPIC30F4012
.
Procedia Engineering
29
:
4223
4227
.
13.
V.
Sandeep
,
Sharankumar Shastri2 Analysis and Design of PMBLDC Motor for Three Wheeler Electric Vehicle Application
(
2019
)
14.
Podhajecki
Jerzy
,
Rawicki Stanislaw New elements within finite element modeling of magnetostriction phenomenon in BLDC motor
(
2020
)
15.
Anshuman Kumaar
Singh
Design and Performance Analysis of an Interior Permanent Magnet Brushless DC motor using ANSYS Electronics
. (
2022
)
16.
Vijay
T.
Design and analysis of a novel topology for slotless brushless DC (BLDC) motors with enhanced torque and efficiency
(
2020
)
17.
Ozgur Ustun
A.
Linear Brushless Direct Current Motor Design Approach for Seismic Shake Tables
(
2020
)
18.
Design, implementation and speed estimation of three-phase 2 kW out-runner permanent magnet BLDC motor for ultralight electric vehicles
(
2021
)
19.
K.
Vanchinathan
Adaptive fractional order PID controller tuning for brushless DC motor using Artificial Bee Colony algorithm
(
2021
)
20.
Mehmet
A.K.A.R.
Brushless Direct Current (BLDC) Motor Control System with Isolated Gate Driver
(
2021
)
21.
Muhamad Ariff
Khalid
Design and analysis of a novel topology for slotless brushless DC (BLDC) motors with enhanced torque and efficiency
(
2021
)
22.
Xue-Gui
G.A.N.
Design optimization of permanent magnet synchronous motor using Taguchi method and experimental validation
(
2021
)
23.
Ali
Sinan
Cabuk Simulation of the effect of segmented axial direction magnets on the efficiency of in-wheel permanent magnet brushless DC motors used in light electric vehicles based on finite element method
(
2021
)
24.
Obi
,
P.I
Determining Efficiency of Brushless Permanent Magnet DC Motor Using Magnetic Circuit Simulation
(
2022
)
25.
E
Ali
A. Yousif ccentricity Effect on Radial Forces of Bearingless BLDC
Motor
:
Study and Analysis
(
2022
)
26.
Unlersen
,
M.F.
;
Balci
,
S.
;
Aslan
,
M.F.
;
Sabanci
,
K.
The speed estimation via BiLSTM-Based network of a BLDC motor drive for fan applications
.
Arab. J. Sci. Eng.
2021
,
1
10
. [CrossRef]
27.
Jose Carlos
Gamazo-Real
,
Ernesto
Vázquez-Sánchez
and
Jaime
Gómez-Gil
, “
Position and Speed Control of Brushless DC Motors Using Sensorless Techniques and Application Trends
,”
Sensors
, vol.
10
, no.
7
, pp.
6901
6947
,
2018
.
28.
Marques
,
T.
;
Reynoso-Meza
,
G.
Applications of multi-objective optimisation for PID-like controller tuning: A 2015–2019 review and analysis
.
IFAC-PapersOnLine
2020
,
53
,
7933
7940
. [CrossRef]
29.
Villarreal-Cervantes
,
M.G.
;
Alvarez-Gallegos
,
J.
Off-line PID control tuning for a planar parallel robot using DE variants
.
Expert Syst. Appl.
2016
,
64
,
444
454
. [CrossRef]
30.
Villarreal-Cervantes
,
M.G.
;
Rodríguez-Molina
,
A.
;
García-Mendoza
,
C.V.
;
Peñaloza-Mejía
,
O.
;
Sepúlveda-Cervantes
,
G.
Multi-Objective On-Line Optimization Approach for the DC Motor Controller Tuning Using Differential Evolution
.
IEEE Access
2017
,
5
,
20393
20407
. [CrossRef]
31.
Mendoza
,
M.
;
Zavala-Río
,
A.
;
Santibáñez
,
V.
;
Reyes
,
F.
A generalised PID-type control scheme with simple tuning for the global regulation of robot manipulators with constrained inputs
.
Int. J.
Control
2015
,
88
,
1995
2012
. [CrossRef]
32.
Hernández-Guzmán
,
V.M.
;
Santibáñez
,
V.
;
Silva-Ortigoza
,
R.
A New Tuning Procedure for PID Control of Rigid Robots
.
Adv. Robot.
2008
,
22
,
1007
1023
. [CrossRef]
33.
Luyben
,
W.L.
;
Luyben
,
M.L.
Essentials of Process Control
;
McGraw-Hill
:
New York, NY, USA
,
1997
.
Joseph
,
E.
;
Olaiya
,
O.
Cohen-Coon PID Tuning Method: A Better Option to Ziegler Nichols-Pid Tuning Method
.
Comput. Eng. Intell.
Syst.
2018
,
9
,
33
37
.
34.
Talbi
,
E.G.
Metaheuristics: From Design to Implementation
;
Wiley Publishing
:
Hoboken, NJ, USA
,
2009
.
Wang
,
L.
PID Control System Design and Automatic Tuning Using Matlab/Simulink
;
John Wiley Sons
:
Hoboken, NJ, USA
,
2020
.
35.
Caponio
,
A.
;
Cascella
,
G.L.
;
Neri
,
F.
;
Salvatore
,
N.
;
Sumner
,
M.
A Fast Adaptive Memetic Algorithm for Online and Offline Control Design of PMSM Drives
.
IEEE Trans. Syst. Man Cybern. Part B (Cybern.
)
2007
,
37
,
28
41
. [CrossRef]
36.
Åström
,
K.
;
Hägglund
,
T.
Revisiting the Ziegler–Nichols step response method for PID control
.
J. Process
Control
2004
,
14
,
635
650
. [CrossRef]
37.
Marlin
,
T.
Process Control
;
McGraw-Hill
:
New York, NY, USA
,
2000
.
Somefun
,
O.A.
;
Akingbade
,
K.
;
Dahunsi
,
F.
The dilemma of PID tuning
.
Annu. Rev. Control
2021
,
52
,
65
74
. [CrossRef]
38.
de Silva
,
C.W.
Intelligent Control. In Computational Complexity: Theory, Techniques, and Applications
;
Springer
:
New York, NY, USA
,
2012
; pp.
1619
1641
.
39.
Roveda
,
L.
;
Forgione
,
M.
;
Piga
,
D.
Robot control parameters auto-tuning in trajectory tracking applications
.
Control Eng. Pract.
2020
,
101
,
104488
. [CrossRef]
40.
Loris
,
R.
;
Maskani
,
J.
;
Franceschi
,
P.
;
Abdi
,
A.
;
Braghin
,
F.
;
Molinari Tosatti
,
L.
;
Pedrocchi
,
N. Scheme-Based
Reinforcement Learning Variable Impedance Control for Human-Robot Collaboration
.
J. Intell. Robot. Syst.
2020
,
100
,
417
433
.
41.
Norouzi
P.
(
2015
)
High performance position control of brushless linear DC motor
.
Doctoral dissertation, Institute of Science and Technology
pp.
1
96
.
42.
Fang
,
J.
;
Li
,
H.
;
Han
,
B.
Torque ripple reduction in BLDC torque motor with nonideal back EMF
.
IEEE Trans. Power Electron.
2011
,
27
,
4630
4637
. [CrossRef]
43.
K. W.
Lee
,
D. K.
Kim
,
B. T.
Kim
,
B. I.
Kwon
,
A novel starting method of the surface permanent-magnet BLDC motors without position sensor for reciprocating compressor, IEEE Trans
.
Ind. Appl.
, vol.
44
n.
1
, Jan./Feb.
2008
, pp.
85
92
.
44.
K.
Iizuka
,
H.
Uzuhashi
,
M.
Kano
,
T.
Endo
,
K.
Mohri
,
Microcomputer control for sensorless brushless motor
,
IEEE Trans. Ind. Appl.
, vol.
IA-21
n.
4
, May./ June.
1985
, pp.
595
601
.
45.
C. C.
Jensen
,
F.
Profumo
,
T. A.
Lipo
,
A low loss permanent magnet brushless DC motor utilizing tape wound amorphous iron
,
IEEE Trans. Ind. Appl.
, vol.
28
n.
3
, May./ June.
1992
, pp.
646
651
.
46.
R. C.
Becerra
,
M.
Ehsani
,
High-speed torque control of brushless permanent magnet motors
,
IEEE Trans. Ind. Electron.
vol.
35
n.
3
, August
1988
, pp.
402
406
.
47.
T.
Kim
,
H. W.
Lee
,
M.
Ehsani
,
Position sensorless brushless DC motor/generator drives: review and future trends
,
IET Electr. Power Appl.
, vol.
1
n.
4
, July
2007
, pp.
557
564
.
48.
T. M.
Jahns
,
W.L.
Soong
,
Pulsating torque minimization techniques for permanent magnet AC motor drives-a review
,
IEEE Trans. Ind. Electron.
, vol.
43
n.
2
, April
1996
, pp.
321
330
.
49.
J. W.
Dixon
,
I.A.
Leal
,
Current control strategy for brushless DC motors based on a common DC signal
,
IEEE Trans. Power Electron.
, vol.
17
n.
2
, March
2002
, pp.
232
240
.
50.
H.
Tan
,
S. L.
Ho
,
A novel single current sensor technique suitable for BLDCM drives
,
IEEE International Conference on Power Electronics and Drive Systems
, ∼PEDS 1999∼, July 27-29,
1999
.
51.
J.
Bocker
, Advanced hysteresis control of brushless DC motors,
Deutsch-Koreanisches Symposium
, June,
2004
,
Aachen
.
52.
P.
Wipasuramonton
,
K.
Sowsuwan
, Current-controlled PWM technique for brushless DC motor drives with a single current sensing resistor,
IEEE 31th International Conference on Telecommunications Energy
,∼INTELEC 2009∼, October 18-22,
2009
,
Incheon
,
South Korea
.
53.
T. A new current sensing method for brushless DC motor drivers
, Hui,
J.
Jian-zhong
,
W.
Xin-yao
,
W.
Yong
,
Journal of Shanghai University
, vol.
4
n. pages.
42
48
, March
2000
.
54.
M. A brushless motor drive with sensorless control for industrial car hydraulic pumps, Bonfe, M. Bergo,
IEEE International Symposium on Industrial Electronics, ISIE
2008
, June 30-July 2, 2008,
Cambridge
,
England
.
55.
N. Comparison of PM motor designs and sensorless control methods for zero-speed rotor position sensing, Bianchi
,
S.
Bolognani
,
J. H.
Jang
,
S. K.
Sul
,
IEEE Trans.
Vol. 1 of Power Electron.
22
n. pp.
2466
2475
, March
2007
.
56.
T. Torque generation in permanent-magnet synchronous motor drivers with rectangle current stimulation
,
M.
Jahns
,
IEEE Trans. Ind. Applied
, issue.
LA
-
20
n. July/August
1984
, pages
803
813
.
57.
J.
Cros
and
P.
Viarouge
,
Synthesis of high-performance permanent magnet motors with focused windings
,
IEEE Trans. Energy Conversations
, vol.
17
n.
248-253
in.Volume 2, June
2002
.
58.
Z.Q. Electrical machinery and motors for electric, hybrid, and fuel cell cars
,
D.
Howe
,
Proceedings of the IEEE
, vol.
95
n. pp.
746
765
, April
2008
.
59.
T. Kenjo as well as
S.
Brushless
,
Nagamori, and Permanent-Magnet DC Motors
(
Oxford
,
U.K. Clarendo
,
1985
).
60.
T. Sensorless control of BLDC motors from near-zero to high velocities
,
H.
Kim
and
M.
Ehsani
,
IEEE Trans.
Vol. 1 of Power Electron.
19
n. June 6,
2004
, pp.
1635
1645
.
61.
J. Fuzzy-logic-based sliding-mode controller architecture for position-sensorless electric car
,
B.
Cao
and
B. G.
Cao
,
IEEE Trans.
Vol. 1 of Power Electron.
24
n. pages.
2368
2378
in. Volume 10, June
2009
.
62.
P. Modeling, simulation, and study of permanent-magnet motor drives, Part II: the brushless DC motor drive
,
R. Krishnan
Pillay
,
IEEE Trans. Ind. Applied
, issue.
25
n.
274-279
in.March/April
1989
.
63.
S. Design and study of a speed-sensorless resilient stochastic L-induced observer for high-performance brushless DC motor drives with reduced torque ripple
,
A. KH. Mozaffari
Niapour
,
M.
Tabarraie
, and
M. R.
Feyzi
,
Energy Convers Management
, vol.
64
,
482
498
, December
2012
.
64.
S. A novel durable speed-sensorless control approach for high-performance brushless DC motor drivers with decreased torque fluctuation
,
Control Engineering Practice
, vol. pp.
42
54
, March 24,
2014
.
This content is only available via PDF.
You do not currently have access to this content.