One of the areas of bio-robotic research that has recently seen the most activity is bio-robotic exoskeleton systems. These technologies have thus undergone extensive development for use with virtual reality haptic interfaces, for the creation of bio-robotics for the rehabilitation of upper limbs after strokes, and for human power augmentation. Movement ranges, safety, comfort of wear, minimization of hardware requirements, and user ability to adapt all require significant consideration in the mechanical design of these devices, however, and control capability, sensitivity, flexible and smooth motion generation, and safety are all particularly important considerations for exoskeleton system controllers. Additionally, the controller must offer movements that mimic human actions. Upper limb bio-robotic exoskeleton systems are thus briefly reviewed in this study in order to outline the underlying theory, difficulties, and potential future advancements relevant to such bio-robotic exoskeleton systems. As part of this, several different control methods are examined that are neurologically related to improving muscle activity; these are thus examined for their effectiveness in performance rehabilitation based on the use of an exoskeleton arm system. Other key components of upper limb exoskeleton systems are also examined based on selected instances of cutting-edge robotics.

1.
Yang
,
C.J.
,
Zhang
,
J.F.
,
Chen
,
Y.
,
Dong
,
Y.M.
,
Zhang
,
Y.
''
A review of exoskeleton-type systems and their key technologies
,''
Mech. Eng. Part C J. Mech. Eng. Sci.
222
(
8
),
1599
612
(
2008
).
2.
Wang
,
W.
,
Qin
,
L.
,
Yuan
,
X.
,
Ming
,
X.
,
Sun
,
T.
,
Liu
,
Y.
''
Bionic control of exoskeleton robot based on motion intention for rehabilitation training
,''
Adv. Robot.
33
(
12
),
590
601
(
2019
).
3.
Wendong
,
W.
,
Hanhao
,
L.
,
Menghan
,
X.
,
Yang
,
C.
,
Xiaoqing
,
Y.
,
Xing
,
M.
, et al. ''
Design and verification of a human–robot interaction system for upper limb exoskeleton rehabilitation
,''
Medical Engineering and Physics.
79
,
19
25
(
2020
).
4.
Zhao
,
Z.
,
Li
,
X.
,
Hao
,
L.
''
Research on the Control Method of a Rehabilitation Exoskeleton Robot for Passive Training on Upper-Limbs of Stroke Patients,
''
8th Annu. IEEE Int. Conf. Cyber Technol. Autom. Control Intell. Syst. CYBER.
1106
11
(
2019
).
5.
Chen
,
C.T.
,
Lien
,
W.Y.
,
Chen
,
C.T.
,
Twu
,
M.J.
,
Wu
,
Y.C.
''
Dynamic Modeling and Motion Control of a Cable-Driven Robotic Exoskeleton with Pneumatic Artificial Muscle Actuators
,''
IEEE.
8
149796
807
(
2020
).
6.
Rehmat
,
N.
,
Zuo
,
J.
,
Meng
,
W.
,
Liu
,
Q.
,
Xie
,
S.Q.
,
Liang
,
H.
2
(
3
),
283
95
(
2018
).
7.
Varghese
,
R.J.
,
Lo
,
B.P.L.
,
Yang
,
G.Z.
''
Design and Prototyping of a Bio-Inspired Kinematic Sensing Suit for the Shoulder Joint: Precursor to a Multi-DoF Shoulder Exosuit
,''
IEEE Robot. Autom. Lett.
5
(
2
),
540
7
(
2020
).
8.
Li
,
X.
,
Liu
,
S.
,
Chang
,
Y.
,
Li
,
S.
,
Fan
,
Y.
,
Yu
,
H.
''
A Human Joint Torque Estimation Method for Elbow Exoskeleton Control
,''
Int. J. Humanoid Robot.
17
(
3
), (
2020
).
9.
Velez-Guerrero
,
M.A.
,
Callejas-Cuervo
,
M.
''
Data acquisition and control architecture for intelligent robotic exoskeletons in rehabilitation
,''
IEEE.
1
4
(
2019
).
10.
Taha
,
Z.
,
Abdul Majeed
,
A.P.P.
,
Abdullah
,
M.A.
,
Azmi
,
K.Z.M.
,
Zakaria
,
M.A.
Bin
,
Ghani
,
A.S.A.
, et al. ''
The control of an upper extremity exoskeleton for stroke rehabilitation by means of a hybrid active force control
,''
Advances in Intelligent Systems and Computing. Springer International Publishing
751
,
361
370
(
2019
).
11.
Bakri
,
A.
Al
,
Lezzar
,
M.Y.
,
Alzinati
,
M.
,
Mortazavi
,
K.
,
Shehieb
,
W.
,
Sharif
,
T.
''
Intelligent Exoskeleton for Patients with Paralysis
,''
IEEE 9th Annu. Inf. Technol. Electron. Mob. Commun. Conf. IEMCON.
189
93
(
2019
).
12.
Guo
,
S.
,
Gao
,
W.
,
Bu
,
D.
''
Radial Basis Function Neural Network-based Control Method for a Upper Limb Rehabilitation Robot
,''
Proc. 2019 IEEE Int. Conf. Mechatronics Autom.
1327
32
(
2019
).
13.
Liu
,
Y.
,
Guo
,
S.
''
Design of a Novel Wearable Power-assist Exoskeleton Device
,''
Proc. World Congr. Intell. Control Autom.
131
4
(
2019
).
14.
Pons
,
J.L.
Ryait
,
H. S.
Arora
,
A. S.
and
Agarwal
,
R. J.
''
Rehabilitation exoskeletal robotics
,''
Mater. Sci. Mater. Med. SUPPL. 1: Med. Biol. Mag.
29
(
3
),
57
63
(
2010
).
15.
Lei
,
Z.
''
An upper limb movement estimation from electromyography by using BP neural network
,''
Biomed. Signal Process. Control.
49
434
9
(
2019
).
16.
Asokan
,
A.
,
Vigneshwar
,
M.
''
Design and Control of an EMG-based Low-cost Exoskeleton for Stroke Rehabilitation
,''
5th Indian Control Conf. (Icc),
478
83
(
2019
).
17.
Treussart
,
B.
,
Geffard
,
F.
,
Vignais
,
N.
,
Marin
,
F.
''
Controlling an upper-limb exoskeleton by EMG signal while carrying unknown load
,''
Proc. IEEE Int. Conf. Robot. Autom.
9107
13
(
2020
).
18.
Hyun
,
D.J.
,
Bae
,
K.H.
,
Kim
,
K.J.
,
Nam
,
S.
,
Lee
,
D.
hyun
. ''
A light-weight passive upper arm assistive exoskeleton based on multi-linkage spring-energy dissipation mechanism for overhead tasks
,''
Rob. Auton. Syst.
122
103309
(
2019
).
19.
Li
,
Z.
,
Wang
,
B.
,
Sun
,
F.
,
Yang
,
C.
,
Xie
,
Q.
,
Zhang
,
W.
''
SEMG-based joint force control for an upper-limb power-assist exoskeleton robot
,''
18
(
3
),
1043
50
(
2014
).
20.
Su
,
H.
,
Li
,
Z.
,
Li
,
G.
,
Yang
,
C.
''
EMG-based neural network control of an upper-limb power-assist exoskeleton robot
,''
7952
LNCS (PART 2),
204
11
(
2013
).
21.
Beigzadeh
,
B.
,
Ilami
,
M.
,
Najafian
,
S.
''
Design and development of one degree of freedom upper limb exoskeleton
,''
2015
223
8
(
2015
).
22.
Lenzi
,
T.
,
De Rossi
,
S.M.M.
,
Vitiello
,
N.
,
Carrozza
,
M.C.
''
Proportional EMG control for upper-limb powered exoskeletons
,''
Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS 628–31
(
2011
).
23.
Niyetkaliyev
,
A.S.
,
Hussain
,
S.
,
Ghayesh
,
M.H.
,
Alici
,
G.
''
Review on Design and Control Aspects of Robotic Shoulder Rehabilitation Orthoses
,''
47
(
6
),
1134
45
(
2017
).
24.
Rosales
,
Y.
,
Lopez
,
R.
,
Rosales
,
I.
,
Salazar
,
S.
,
Lozano
,
R.
''
Design and modeling of an upper limb exoskeleton
,''
2015
(
19
),
266
72
(
2015
).
25.
Keemink
,
A.Q.L.
,
Van Oort
,
G.
,
Wessels
,
M.
,
Stienen
,
A.H.A.
''
Differential Inverse Kinematics of a Redundant 4R Exoskeleton Shoulder Joint
,''
26
(
4
),
817
29
(
2018
).
26.
Li
,
X.
,
Pan
,
Y.
,
Chen
,
G.
,
Yu
,
H.
''
Multi-modal control scheme for rehabilitation robotic exoskeletons
,''
36
(
5– 7
),
759
77
(
2017
).
27.
Al-Fahaam
,
H.
,
Davis
,
S.
,
Nefti-Meziani
,
S.
''
Wrist rehabilitation exoskeleton robot based on pneumatic soft actuators,
''
Int. Conf. Students Appl. Eng.
2016
491
6
(
2017
).
28.
Vélez-guerrero
,
M.A.
,
Callejas-cuervo
,
M.
,
Mazzoleni
,
S.
''
Artificial intelligence-based wearable robotic exoskeletons for upper limb rehabilitation: A review
,''
Sensors
21
(
6
),
1
30
(
2021
).
29.
Axes
,
S.
aligning
E.
,
Decoupling
,
T.
''
Short Papers of Joint Rotations and Translations
,''
Ieee Trans. Robot.
25
(
3
),
628
33
(
2009
).
30.
Ullauri
,
J.B.
,
Peternel
,
L.
,
Ugurlu
,
B.
,
Yamada
,
Y.
,
Morimoto
,
J.
''
On the EMG-based torque estimation for humans coupled with a force-controlled elbow exoskeleton
,''
Conf. Adv. Robot. ICAR
2015
302
7
(
2015
).
31.
Huang
,
V.S.
,
Krakauer
,
J.W.
''
Robotic neurorehabilitation: A computational motor learning perspective
,''
6
(
1
),
1
13
(
2009
).
32.
Tsai
,
B.C.
,
Wang
,
W.W.
,
Hsu
,
L.C.
,
Fu
,
L.C.
,
Lai
,
J.S.
''
An articulated rehabilitation robot for upper limb physiotherapy and training
,''
IEEE/RSJ 2010 Int. Conf. Intell. Robot. Syst. IROS.
1470
5
(
2010
).
33.
Oguntosin
,
V.W.
,
Mori
,
Y.
,
Kim
,
H.
,
Nasuto
,
S.J.
,
Kawamura
,
S.
,
Hayashi
,
Y.
''
Design and Validation of exoskeleton actuated by soft modules toward neurorehabilitation-vision-based control for precise reaching motion of upper limb
,''
Front. Neurosci.
11
,
1
20
(
2017
).
34.
Nef
,
T.
,
Guidali
,
M.
,
Riener
,
R.
''
ARMin III - arm therapy exoskeleton with an ergonomic shoulder actuation
,''
Appl. Bionics Biomech.
6
(
2
),
127
42
(
2009
).
35.
Hailong Yang Queying Ding Beth
E.
Thompson
,
K.N.
,
Hailong Yang Kate Nukunya
,
Q.D.B.E.T.
,
Hailong Yang Queying Ding Beth
E.
Thompson
,
K.N
. (
2021
).
36.
S.W.H.
Mudiyanselage
. ''
A Study of Controlling Upper-Limb Exoskeletons Using EMG and EEG signals
,''
144
144
(
2014
).
37.
Van Der Heide
,
L.A.
,
Van Ninhuijs
,
B.
,
Bergsma
,
A.
,
Gelderblom
,
G.J.
,
Van Der Pijl
,
D.J.
,
De Witte
,
L.P.
''
An overview and categorization of dynamic arm supports for people with decreased arm function
,''
Prosthet. Orthot. Int.
38
(
4
),
287
302
(
2014
).
38.
Zhao
,
Z.
,
Li
,
X.
,
Hao
,
L.
''
Research on the Control Method of a Rehabilitation Exoskeleton Robot for Passive Training on Upper-Limbs of Stroke Patients
,''
8th Annu. IEEE Int. Conf. Cyber Technol. Autom. Control Intell. Syst.
2018
1106
11
(
2019
).
39.
Unluhisarcikli
,
O.
,
Pietrusinski
,
M.
,
Weinberg
,
B.
,
Bonato
,
P.
,
Mavroidis
,
C.
''
Design and control of a robotic lower extremity exoskeleton for gait rehabilitation
,''
IEEE Int. Conf. Intell. Robot. Syst.
71
4893
8
(
2011
).
This content is only available via PDF.
You do not currently have access to this content.