In the domain Q={(t, x) : t ≥ t0>0, x ∈ ℝN}, we study the following Cauchy problem to the double nonlinear parabolic equation not in divergence form with source or absorption:
(1)
(2)
where k, m ≥ 1, p ≥ 2, 0<q<1, ε=±1, λ, n, β are the given numerical parameters.
Topics
Algebraic geometry
REFERENCES
1.
M.
Aripov
and S.
Sadullaeva
, Computer Simulation of Nonlinear Diffusion Processes
(National University of Uzbekistan Press
, 2020
).2.
A. A.
Samarskii
, V. A.
Galaktionov
, S. P.
Kurdyumov
, and A. P.
Mikhailov
, Blow-Up in Quasilinear Parabolic Equations
(Walter de Gruyter
, Berlin
, 1995
).3.
M.
Aripov
, A. S.
Matyakubov
, J. O.
Khasanov
, and M. M.
Bobokandov
, “Mathematical modeling of double nonlinear problem of reaction diffusion in not divergent form with a source and variable density
,” Journal of Physics: Conference Series
2131
, 032043
(2021
).4.
Q.
Yuanwei
, “Critical exponents of degenerate parabolic equations
,” Science in China (Scientia Sinica) Series A
38
, 1153
–1162
(1995
).5.
M.-X.
Yuan-WeiQi
, “Critical exponents of quasilinear parabolic equations
,” Journal of Mathematical Analysis and Applications
267
, 264
–280
(2002
).6.
A.
Martynenko
and A.
Tedeev
, “The Cauchy problem for a quasilinear parabolic equation with a source and inhomogeneous density
,” Com-putational Mathematics and Mathematical Physics
47
, 238
(2007
).7.
A. V.
Martynenko
, A. F.
Tedeev
, and V. N.
Shramenko
, “The Cauchy problem for a degenerate parabolic equation with inhomogeneous density and source in the class of slowly decaying initial data
,” Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
76
, 139
–156
(2012
).8.
D.
Andreucci
and A. F.
Tedeev
, “A Fujita type result for a degenerate neumann problem in domains with noncompact boundary
,” Journal of Mathematical Analysis and Applications
231
, 543
–567
(1999
).9.
F. A. M.
El-Mikkawy
, “Algorithms for solving linear systems of equations of three-diagonal type via transformations
,” Applied Mathematics
5
, 413
–422
(2014
).10.
M.
Aripov
, M.
Sayfullayeva
, and F.
Kabiljanova
, “Exact solution of a double nonlinear problem of biological population with absorption and with migration
,” in 2021 International Conference on Information Science and Communications Technologies (ICISCT)
(2021
) pp. 1
–4
.11.
A.
Matyakubov
and D.
Raupov
, “On some properties of the blow-up solutions of a nonlinear parabolic system non-divergent form with cross-diffusion,” in Lecture Notes in Civil Engineering
(Springer
, 2022
) pp. 289
–301
.12.
M. M.
Aripov
, J. S.
Rajabov
, and S. R.
Settiev
, “About one of the mathematical models of viscous flow incompressible fluid above sandy bottom
,” Journal of Physics: Conference Series
1902
, 012001
(2021
).13.
M. M.
Aripov
and O. R.
Djabbarov
, “Estimate and asymptotic of the solution for the p-Laplacian parabolic equation double non-linear type with damping
,” Journal of Physics: Conference Series
1901
, 012030
(2021
).
This content is only available via PDF.
©2024 Authors. Published by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.