Microalgae are promising sources for biofuels, food products, and secondary metabolites for pharmaceutical purposes. Chlorella sp. is one of the microalgae strains known to have relatively high lipid and protein, carbohydrates, and a wide range of secondary metabolites. However, high operation costs and relatively low biomass production are challenges in the mass cultivation of this microalgae. In this study, the effect of sodium bicarbonate on Chlorella sp.’s growth, including biomass, lipid and carbohydrate content, and fatty acid compositions, was studied under the combination of urea and Walne nutrient as the cultivation medium. In the batch cultivation method, sodium bicarbonate in the concentration of 1.0, 2.5, and 5.0 g/L was supplemented to the culture with continuous illumination and constant aeration. The control sample was treated using the same medium without sodium bicarbonate supplementation. As a result, the addition of sodium bicarbonate for all concentrations significantly affected the growth profile of Chlorella sp., shown by its cell and biomass productivity compared to the control culture without sodium bicarbonate (p<0.05). The microalgae cultivation with 1.0 g/L sodium bicarbonate had the highest biomass density, reaching 0.7600±0.0278 g/L and 0.1623±0.0020 specific growth rate. Fatty acid compositions of microalgae oil from Chlorella sp. supplemented with sodium bicarbonate were found to be dominated by unsaturated fatty acid from C14-C20, with linoleic acid in the highest FAME percentage (23.43%). In a comparison, fatty acids of microalgae oil from the control culture were mainly composed of saturated fatty acid, with palmitic acid in the highest concentration (21.91%). From these results, microalgae oil extracted from wet biomass of Chlorella sp. grown in sodium bicarbonate has more potential to be essential lipids that can be consumed as a food supplement.

1.
X.
Zheng
,
D.
Streimikiene
,
T.
Balezentis
,
A.
Mardani
,
F.
Cavallaro
, and
H.
Liao
, “
A review of greenhouse gas emission profiles, dynamics, and climate change mitigation efforts across the key climate change players
,”
J Clean Prod
, Vol.
234
, pp.
1113
1133
,
2019
, DOI: .
2.
T.
Zhao
et al, “
Enhancement of Lipid Productivity in Chlorella pyrenoidosa by Collecting Cells at the Maximum Cell Number in a Two-stage Culture Strategy
,”
Algal Res
, Vol.
55
, no.
March
2021
, DOI: .
3.
P.
Varshney
,
J.
Beardall
,
S.
Bhattacharya
, and
P. P.
Wangikar
, “
Isolation and Biochemical Characterization of Two Thermophilic Green Algal Species-Asterarcys quadricellulare and Chlorella sorokiniana, Which Are Tolerant to High Levels of Carbon Dioxide and Nitric Oxide
,”
Algal Res
, Vol.
30
, pp.
28
37
, Mar.
2018
, DOI: .
4.
Z.
Tu
,
L.
Liu
,
W.
Lin
,
Z.
Xie
, and
J.
Luo
, “
Potential of using sodium bicarbonate as external carbon source to cultivate microalga in non-sterile condition
,”
Bioresour Technol
, Vol.
266
, no.
June
, pp.
109
115
, 2018, DOI: .
5.
Direktorat Jenderal Holtikultura
, “
Mitigasi Gas Rumah Kaca (GRK) Sektor Pertanian.
http://ditlin.hortikultura.pertanian.go.id/assets/cp/901111-12_19012020_1579444922_Mitigasi_Gas_Rumah_Kaca_Sektor_Pertanian.pdf (accessed Aug. 08, 2022).
6.
M.
Bussa
,
A.
Eisen
,
C.
Zollfrank
, and
H.
Röder
, “
Life cycle assessment of microalgae products: State of the art and their potential for the production of polylactic acid
,”
J Clean Prod
, Vol.
213
, pp.
1299
1312
,
2019
, DOI: .
7.
H. H.
Chen
and
J. G.
Jiang
, “
Lipid Accumulation Mechanisms in Auto-and Heterotrophic Microalgae
,”
J Agric Food Chem
, Vol.
65
, no.
37
, pp.
8099
8110
,
2017
, DOI: .
8.
C.
Fei
,
T.
Wang
,
A.
Woldemicael
,
M.
He
,
S.
Zou
, and
C.
Wang
, “
Nitrogen Supplemented by Symbiotic Rhizobium Stimulates Fatty-acid Oxidation in Chlorella variabilis
,”
Algal Res
, Vol.
44
, no.
October
, p.
101692
,
2019
, DOI: .
9.
Y.
Li
,
C.
Lammi
,
G.
Boschin
,
A.
Arnoldi
, and
G.
Aiello
, “
Recent Advances in Microalgae Peptides: Cardiovascular Health Benefits and Analysis
,”
J Agric Food Chem
, Vol.
67
, no.
43
, pp.
11825
11838
,
2019
, DOI: .
10.
M. S.
Mahendran
,
A. C. T. A.
Dhanapal
,
L. S.
Wong
,
G.
Kasivelu
, and
S.
Djearamane
, “
Microalgae as a Potential Source of Bioactive Food Compounds
,”
Current Research in Nutrition and Food Science
, Vol.
07
, no.
1
, pp.
917
927
,
2019
, DOI: DOI: .
11.
J. C.
Nzayisenga
and
A.
Sellstedt
, “
Metabolomic Study of Heterotrophically Grown Chlorella sp. Isolated from Wastewater in Northern Sweden
,”
Molecules
, Vol.
26
, no.
2410
,
2021
, DOI: .
12.
P. E.
Zemke
,
M. R.
Sommerfeld
, and
Q.
Hu
, “
Assessment of Key Biological and Engineering Design Parameters for Production of Chlorella zofingiensis (Chlorophyceae) in Outdoor Photobioreactors
,”
Appl Microbiol Biotechnol
, Vol.
97
, no.
12
, pp.
5645
5655
,
2013
, DOI: .
13.
T.
Aramaki
,
M. M.
Watanabe
,
M.
Nakajima
, and
S.
Ichikawa
, “
Dewatering of Microalgae Suspensions by Cake Filtration with Filter Cloths
,”
J Appl Phycol
, Vol.
33
, no.
4
, pp.
1977
1985
,
2021
, DOI: .
14.
Z.
Chen
,
S.
Qiu
,
Z.
Yu
,
M.
Li
, and
S.
Ge
, “
Enhanced Secretions of Algal Cell-Adhesion Molecules and Metal Ion-Binding Exoproteins Promote Self-Flocculation of Chlorella sp. Cultivated in Municipal Wastewater
,”
Environ Sci Technol
, Vol.
55
, no.
17
, pp.
11916
11924
,
2021
, DOI: .
15.
A.
Pulgarin
et al, “
Cultivation of microalgae at high-density with pretreated liquid digestate as a nitrogen source: Fate of nitrogen and improvements on growth limitations
,”
J Clean Prod
, Vol.
324
, p.
129238
,
2021
, DOI: .
16.
N. A.
Hidayati
et al, “
Development of fertilizer-based medium for the growth rate improvement of Chlorella sp. in the laboratory scale
,” in
IOP Conference Series: Earth and Environmental Science
,
2022
, vol.
1034
, no.
1
. DOI: .
17.
C.
Debnath
,
T. K.
Bandyopadhyay
,
B.
Bhunia
,
U.
Mishra
,
S.
Narayanasamy
, and
M.
Muthuraj
, “
Microalgae: Sustainable resource of carbohydrates in third-generation biofuel production
,”
Renewable and Sustainable Energy Reviews
, Vol.
150
, no.
October 2020
, p.
111464
,
2021
, DOI: .
18.
K.
Mokashi
,
V.
Shetty
,
S. A.
George
, and
G.
Sibi
, “
Sodium Bicarbonate as Inorganic Carbon Source for Higher Biomass and Lipid Production Integrated Carbon Capture in Chlorella vulgaris
,”
Achievements in the Life Sciences
, Vol.
10
, no.
1
, pp.
111
117
,
2016
, DOI: .
19.
R. A.
Rahardini
,
S.
Helmiati
, and
B.
Triyatmo
, “
Effect of inorganic fertilizer on the growth of freshwater Chlorella sp
.,” in
IOP Conference Series: Earth and Environmental Science
, Apr.
2018
, vol.
139
, no.
1
. DOI: .
20.
A. I.
Khan
,
A.
bin Habib
, and
I.
Miah
, “
Growth Performance of Chlorella vulgaris in Different Concentrations of Red Sugar Medium Easily Available in Bangladesh
,”
Int J Fish Aquat Stud
, Vol.
6
, no.
6
, pp.
136
141
,
2018
, [Online]. Available: www.fisheriesjournal.com
21.
L.
Yahya
,
R.
Harun
, and
L. C.
Abdullah
, “
Screening of Native Microalgae Species for Carbon Fixation at the Vicinity of Malaysian Coal-fired Power Plant
,”
Sci Rep
, Vol.
10
, no.
1
, pp.
1
14
,
2020
, DOI: .
22.
L.
Yao
,
J. A.
Gerde
,
S. L.
Lee
,
T.
Wang
, and
K. A.
Harrata
, “
Microalgae Lipid Characterization
,”
J Agric Food Chem
, Vol.
63
, no.
6
, pp.
1773
1787
,
2015
, DOI: .
23.
L.
Gouveia
et al, “
Microalgae Biomass Production Using Wastewater: Treatment and Costs. Scale-up Considerations
.,”
Algal Res
, Vol.
16
, pp.
167
176
,
2016
, DOI: .
24.
A.
Richmond
and
Q.
Hu
,
Handbook of Microalgal Culture : Applied Phycology and Biotechnology.
25.
S.
Negi
et al, “
Impact of Nitrogen Limitation on Biomass, Photosynthesis, and Lipid Accumulation in Chlorella sorokiniana
,”
J Appl Phycol
, Vol.
28
, no.
2
, pp.
803
812
,
2015
, DOI: .
26.
L.
Corredor
,
E. P.
Barnhart
,
A. E.
Parker
,
R.
Gerlach
, and
M. W.
Fields
, “
Effect of Temperature, Nitrate Concentration, pH and Bicarbonate Addition on Biomass and Lipid Accumulation in the Sporulating Green Alga PW95
,”
Algal Res
, Vol.
53
, p.
102148
,
2021
, DOI: .
27.
L.
Ramanna
,
A.
Guldhe
,
I.
Rawat
, and
F.
Bux
, “
The Optimization of Biomass and Lipid Yields of Chlorella sorokiniana When Using Wastewater Supplemented with Different Nitrogen Sources
,”
Bioresour Technol
, Vol.
168
, pp.
127
135
,
2014
, DOI: .
28.
H.
Hadiyanto
,
M. M. Azimatun
Nur
, and
G. D.
Hartanto
, “
Cultivation of chlorella sp. As Biofuel Sources in Palm Oil Mill Effluent (POME
),”
International Journal of Renewable Energy Development
, Vol.
1
, no.
2
, pp.
45
49
,
2012
, DOI: .
29.
S.
Dhup
,
D. C.
Kannan
, and
V.
Dhawan
, “
Understanding Urea Assimilation and its Effect on Lipid Production and Fatty Acid Composition of Scenedesmus Sp
,”
Symbiosis
, pp.
1
7
,
2016
, DOI: DOI: .
30.
C.
Zhu
et al, “
Efficient CO2 Capture from the Air for High Microalgal Biomass Production by a Bicarbonate Pool
,”
Journal of CO2 Utilization
, Vol.
37
, no.
August 2019
, pp.
320
327
,
2020
, DOI: .
31.
A.
Sirikhachornkit
,
A.
Suttangkakul
,
S.
Vuttipongchaikij
, and
P.
Juntawong
, “
De Novo Transcriptome Analysis and Gene Expression Profiling of an Oleaginous Microalga Scenedesmus acutus TISTR8540 during Nitrogen Deprivation-induced Lipid Accumulation
,”
Sci Rep
, Vol.
8
, no.
1
, pp.
1
12
,
2018
, DOI: .
32.
M.
Mondal
,
A.
Ghosh
,
G.
Oinam
,
O. N.
Tiwari
,
K.
Gayen
, and
G. N.
Halder
, “
Biochemical Responses to Bicarbonate Supplementation on Biomass and Lipid Productivity of Chlorella Sp. BTA9031 Isolated from Coalmine Area
,”
Environ Prog Sustain Energy
, Vol.
00
, no.
00
, pp.
1
9
,
2017
, DOI: .
33.
M.
Nayak
,
W. I.
Suh
,
B.
Lee
, and
Y.
Keun
, “
Enhanced Carbon Utilization Efficiency and FAME Production of Chlorella sp. HS2 Through Combined Supplementation of Bicarbonate and Carbon Dioxide
,”
Energy Convers Manag
, Vol.
156
, no.
October 2017
, pp.
45
52
,
2018
, DOI: .
34.
T.
Mathimani
,
M.
Sekar
,
S.
Shanmugam
,
J. S. M.
Sabir
,
N. T. L.
Chi
, and
A.
Pugazhendhi
, “
Relative abundance of lipid types among Chlorella sp. and Scenedesmus sp. and ameliorating homogeneous acid catalytic conditions using central composite design (CCD) for maximizing fatty acid methyl ester yield
,”
Science of the Total Environment
, Vol.
771
, p.
144700
,
2021
, DOI: .
35.
V.
Vello
et al, “
Metabolomic Profiles of Tropical Chlorella and Parachlorella Species in Response to Physiological Changes During Exponential and Stationary Growth Phase
,”
Algal Res
, Vol.
35
, no.
March
, pp.
61
75
,
2018
, DOI: .
36.
E.
Sarayloo
et al, “
Understanding Lipid Metabolism in High-lipid-producing Chlorella vulgaris Mutants at the Genome-Wide Level
,”
Algal Res
, Vol.
28
, no.
November
, pp.
244
252
,
2017
, DOI: .
37.
V.
Ördög
et al, “
Effect of Temperature and Nitrogen Concentration on Lipid Productivity and Fatty Acid Composition in Three Chlorella strains
,”
Algal Res
, Vol.
16
, pp.
141
149
,
2016
, DOI: .
This content is only available via PDF.
You do not currently have access to this content.