Social media analysis is a trending topic among researchers, especially in exploring public opinion. The evolution of web 2.0 technology is a strong reason for turning social media into a digital platform that can easily facilitate various user expressions and opinions through diverse content. Expressions and opinions that emerge through interaction between social media users have great potential to be studied and used in various contexts, including for the government, which aims to understand the thoughts of its citizens regarding newly implemented public policies. Recently, the Government of the Republic of Indonesia established five super-priority tourist destinations through the Ministry of Tourism and Creative Economy (Kemenparekraf) to increase foreign exchange through tourism. These destinations are Lake Toba, Labuan Bajo, Borobudur, Mandalika, and Likupang. However, the policies launched need to be analyzed to support the success of the launched policies. One way is to analyze public opinion to find out how many citizens will recommend the destination. TikTok, one of the most used social media platforms on the market, can be used to investigate public opinion about specific tourist locations. Nowadays, many young travelers use TikTok to express their thoughts and feelings. Due to the non-standard language and the frequent use of slang in daily interactions, extracting opinions on TikTok’s social media data presents specific difficulties. It might be beneficial to utilize a language corpus frequently used to analyze public sentiment more accurately. This study used FastText word embedding combined with the Long Short - Term Memory (LSTM) model with single, double, and triple layers to investigate the public’s opinion of Tiktok social media data. Based on the experiment, using FastText and LSTM with multiple layers provides good performance in developing various system innovations for investigating public opinion, especially on social media data TikTok.

1.
Q. A.
Xu
,
V.
Chang
, and
C.
Jayne
,
Decis. Anal. J.
3
,
100073
(
2022
).
2.
D. T.
Alamanda
,
A.
Ramdhani
,
I.
Kania
,
W.
Susilawati
, and
E. S.
Hadi
,
Int. J. Humanit. Arts Soc. Sci.
5
(
2
),
72
82
(
2019
).
3.
Z.
Abbasi-Moud
,
H.
Vahdat-Nejad
, and
J.
Sadri
,
Expert Syst. Appl.
167
,
114324
(
2021
).
4.
G.
Gupta
and
P.
Gupta
, “
Twitter mining for sentiment analysis in tourism industry
,” in
Proc. 3rd World Conf. Smart Trends Syst. Secur. Sustain.
WorldS4 2019,
2019
, pp.
302
306
.
5.
I. P.
Windasari
and
D.
Eridani
, “
Sentiment analysis on travel destination in Indonesia
,” in
Proc. - 2017 4th Int. Conf. Inf. Technol. Comput. Electr. Eng. ICITACEE 2017
,
2017
, pp.
276
279
.
6.
A. F.
Pathan
and
C.
Prakash
,
J. King Saud Univ. - Comput. Inf. Sci.
34
(
10
),
8716
8726
(
2022
).
7.
I.
Surjandari
,
R. A.
Wayasti
,
E.
Laoh
,
Zulkarnain
,
A. M. M.
Rus
, and
I.
Prawiradinata
,
Int. J. Technol.
10
(
4
),
818
828
(
2019
).
8.
R.
Alfian
,
A.
Malik
, and
Y.
Sibaroni
,
Journal of Computer System and Informatics (JoSYC)
3
(
4
),
277
285
(
2022
).
9.
Y.
Wengel
,
L.
Ma
,
Y.
Ma
,
M.
Apollo
,
K.
Maciuk
, and
A. S.
Ashton
, “
J. Outdoor Recreat. Tour.
37
,
100458
(
2022
).
10.
H.
Irawan
,
G.
Akmalia
, and
R. A.
Masrury
, “
Mining tourist’s perception toward Indonesia tourism destination using sentiment analysis and topic modelling
,” in
ACM Int. Conf. Proceeding Ser.
,
2019
, pp.
7
12
.
11.
A.
Setyanto
,
A.
Laksito
,
F.
Alarfaj
,
M.
Alreshoodi
,
I.
Oyong
,
M.
Hayaty
, … and
L.
Kurniasari
,
Applied Sciences
12
(
9
),
4140
(
2022
).
12.
M.
Rosanensi
,
M.
Madani
,
R. T. P.
Wanggono
,
A.
Setyanto
,
A. A.
Selameto
, and
S. N.
Wahyuni
, “
Analysis sentiment and tourist response to rinjani mountain tour based on comments from photo upload in instagram
,” in
Proc. - 2018 3rd Int. Conf. Inf. Technol. Inf. Syst. Electr. Eng. ICITISEE 2018
,
2018
, pp.
184
188
.
13.
A.
Alwehaibi
,
M.
Bikdash
,
M.
Albogmi
, and
K.
Roy
,
J. King Saud Univ. - Comput. Inf. Sci.
34
(
8
),
6140
6149
(
2022
).
14.
A. I.
Alharbi
,
P.
Smith
, and
M.
Lee
,
Procedia CIRP
189
,
258
265
(
2021
).
15.
D.
Gunawan
,
Z.
Saniyah
, and
A.
Hizriadi
,
Procedia Comput. Sci.
161
,
553
559
(
2019
).
16.
R.
Albayari
and
S.
Abdallah
,
Data
7
(
7
),
1
11
(
2022
).
17.
R. S.
Putra
,
R.
Nurcahyo
, and
D. S.
Gabriel
, “
Tourists Perception in Bali Using Social Media and Online Media Sentiment Analysis
,” in
ICETAS 2019 - 2019 6th IEEE Int. Conf. Eng. Technol. Appl. Sci.
,
2019
.
18.
S.
Zervoudakis
,
E.
Marakakis
,
H.
Kondylakis
, and
S.
Goumas
,
Mach. Learn. with Appl.
3
,
100018
(
2021
).
19.
M. S.
Viñán-Ludeña
and
L. M.
de Campos
,
J. Hosp. Tour. Technol.
13
(
5
), (
2022
).
20.
I. Y. R.
Pratiwi
,
R. A.
Asmara
, and
F.
Rahutomo
, “
Study of hoax news detection using naïve bayes classifier in Indonesian language
,” in
2017 11th International Conference on Information Communication Technology and System (ICTS)
,
2017
, pp.
73
78
.
21.
P.
Prameswari
,
I.
Surjandari
, and
E.
Laoh
, “
Opinion mining from online reviews in Bali tourist area
,” in
Proceeding - 2017 3rd Int. Conf. Sci. Inf. Technol. Theory Appl. IT Educ. Ind. Soc. Big Data Era, ICSITech 2017
,
2017
, pp.
226
230
.
22.
E. I.
Setiawan
,
S.
Johanes
,
A. T.
Hermawan
, and
Y.
Yamasari
,
J. Intell. Syst. Comput.
3
(
2
),
55
60
(
2021
).
This content is only available via PDF.
You do not currently have access to this content.