The group of real-world physical devices like sensors, machines, vehicles and various things connected to Internet is called as Internet of things (IoT). The major challenge in IoT is that it is fully dependent on the cloud for all kinds of computation and some of the IoT based applications such as Smart Navigation system, Smart Health monitoring system needs new requirements such as mobility, location-based awareness etc. cannot be fulfilled in cloud processing. ICT’s three pillars namely computing, network and storage faces some challenges in terms of processing and structuring the data while using formal Cloud computing methods. Hence Edge Computing arrives with the processing and storage in the edge of the networks which is very close to data sources when compared to Cloud Processing. In other dimensions, Deep learning is a potential method for gleaning accurate and usable information from the unprocessed IoT sensor data. Therefore, in this detailed review work, we first address the latency issues, security and privacy issues associated with edge computing, then we introduce IoT deep learning for IoT data analysis in Edge Computing devices. Some of the objectives of Edge computing in Service level are Latency minimization, Network Management, Cost Optimization, Data Management, Energy Management, and Resource Management. The review work still remains absent in making a thorough review on the recent advancements of data security analysis in edge computing. Furthermore, we focus on the advantages and disadvantages of the existing works on security and data processing in edge computing environment and highlighting the open issues.

1.
M.
Caulfield
,
E. S.
Chung
,
A.
Putnam
,
H.
Angepat
,
J.
Fowers
,
M.
Haselman
,
S.
Heil
,
M.
Humphrey
,
P.
Kaur
,
J. Y.
Kim
,
D.
Lo
,
T.
Massengill
,
K.
Ovtcharov
,
M.
Papamichael
,
L.
Woods
,
S.
Lanka
,
D.
Chiou
, and
D.
Burger
,
A cloud-scale acceleration architecture
. (
49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)
,
2016
), pp.
1
13
.
2.
M.
Brenno
,
R. A.
Rios
,
C.
Santana
, and
C.
Prazeres
.
FoT-Stream: A Fog platform for data stream analytics in IoT
.
Computer Communications
, (
2020
).
3.
F.
Atlam Hany
.,
R.J.
Walters
, and
G.B.
Wills
(
2018
).
Intelligence of things: opportunities & challenges
. (
3rd Cloudification of the Internet of Things (CIoT)
, 2018), pp.
1
6
.
4.
Mujawar
,
S. Kumar
,
S.S.
Krishnan
, &
A.
Sawant
,
IoT: Green Data Center Strategies
.
International Journal on Future Revolution in Computer Science & Communication Engineering
,
4
,
5
,
170
174
(
2018
).
5.
M.M.U.
Rathore
,
A.
Paul
,
A.
Ahmad
,
B.W.
Chen
,
B.
Huang
, and
W.
Ji
, (
2015
).
Real-time big data analytical architecture for remote sensing application
.
IEEE journal of selected topics in applied earth observations and remote sensing
,
8
,
10
,
4610
4621
(2015).
6.
Lee
,
The Internet of Things for enterprises: An ecosystem, architecture, and IoT service business model
.
Internet of Things
,
7
,
100078
(
2019
).
7.
Tarabasz
,
A.
The Internet of Things–Digital Revolution in Offline Market. Opportunity or Threat?.
Handel Wewnętrzny
,
363
,
4
,
325
337
(
2016
).
8.
R.B.
Mahale
, R. B., and
S.S.
Sonavane
, S. S.
Smart Poultry Farm Monitoring Using IoT and Wireless Sensor Networks
International Journal of Advanced Research in Computer Science
,
7
,
3
(
2016
).
9.
J.
Pan
, J., and
J.
McElhannon
,
Future edge cloud and edge computing for internet of things applications.
IEEE Internet of Things Journal
,
5
,
1
,
439
449
(
2017
).
10.
G.
Aydin
,
I.R.
Hallac
, and
B.
Karakus
,
Architecture and implementation of a scalable sensor data storage and analysis system using cloud computing and big data technologies.
Journal of Sensors
(
2015
).
11.
R. K.
Barik
,
H.
Dubey
,
C.
Misra
,
D.
Borthakur
,
N.
Constant
,
S. A.
Sasane
,
R. K.
Lenka
,
B.S.P.
Mishra
,
H.
Das
&
K.
Mankodiya
Assisted Cloud Computing in Era of Big Data and Internet-of-Things: Systems, Architectures, and Applications
. In:
Cloud Computing for Optimization: Foundations, Applications, and Challenges
. Springer,
39
,
367
394
(
2018
).
12.
S.
Bhandari
,
S.K.
Sharma
, and
X.
Wang
(
2017
).
Latency minimization in wireless IoT using prioritized channel access and data aggregation
. (
IEEE Global Communications Conference, GLOBECOM
, 2017) pp.
1
6
.
13.
Wang
,
B. Zhang
,
K.
Ren
and
J. M.
Roveda
Privacy-Assured Outsourcing of Image Reconstruction Service in Cloud.
IEEE Transactions on Emerging Topics in Computing.
1
,
1
,
166
177
(
2013
).
14.
Yang
,
D. Puthal
,
S. P.
Mohanty
and
E.
Kougianos
Big-Sensing-Data Curation for the Cloud is Coming: A Promise of Scalable Cloud-Data-Center Mitigation for Next-Generation IoT and Wireless Sensor Networks
.
IEEE Consumer Electronics Magazine.
6
,
4
,
48
56
(
2017
).
15.
H.
Cai
,
B.
Xu
,
L.
Jiang
, and
A.V.
Vasilakos
,
IoT-based big data storage systems in cloud computing: perspectives and challenges.
IEEE Internet of Things Journal
,
4
,
1
,
75
87
(
2016
).
16.
S.B.
Calo
,
M.
Touna
,
D.C.
Verma
, and
A.
Cullen
,
Edge computing architecture for applying AI to IoT
. (
IEEE International Conference on Big Data (Big Data)
,
2016
).
17.
H.
Cao
, and
M.
Wachowicz
,
An edge-fog-cloud architecture of streaming analytics for internet of things applications.
Sensors
,
19
,
16
,
3594
(
2019
).
18.
T.
Chakraborty
, and
S.K.
Datta
,
Home automation using edge computing and internet of things
. (
IEEE International Symposium on Consumer Electronics (ISCE)
2017
) pp.
47
49
.
19.
J.
Chen
, J., and
X.
Ran
,
Deep Learning with Edge Computing: A Review
.
Proceedings of the IEEE
,
107
,
8
,
1655
1674
(
2019
).
20.
Boru
,
D.
Kliazovich
,
F.
Granelli
,
P.
Bouvry
and
A.
Zomaya
,
Energy-efficient data replication in cloud computing datacenters
,
Cluster Comput.
,
18
,
385
402
(
2015
).
21.
Ahmed
,
A.
Ahmed
,
I.
Yaqoob
,
J. Shuja
;
A.
Gani
,
M.
Imran
and
M.
Shoaib
Bringing Computation Closer toward the User Network: Is Edge Computing the Solution?
IEEE Communications Magazine.
55
,
11
,
138
144
(
2017
).
22.
M.
Elrawy
,
A.
Awad
, and
H.
Hamed
,
Intrusion detection systems for IoT-based smart environments: a survey
.
Journal of Cloud Computing
7
,
21
(
2018
).
23.
H.
Sankar
,
V.
Subramaniyaswamy
,
V.
Vijayakumar
,
Sangaiah Arun
Kumar
,
R.
Logesh
,
A.
Umamakeswari
(
2019
).
Intelligent sentiment analysis approach using edge computing-based deep learning technique.
Special Issue: Software Tools and Techniques for Fog and Edge Computing
,
50
(
5
),
645
657
.
24.
T.
Han
,
K.
Muhammad
,
T.
Hussain
,
J.
Lloret
, and
S.W.
Baik
,
An Efficient Deep Learning Framework for Intelligent Energy Management in IoT Networks
.
IEEE Internet of Things Journal
(
2020
).
25.
R.
Hou
, R.,
Y.
Kong
, Y.,
B.
Cai
, B., and
H.
Liu
,
Unstructured big data analysis algorithm and simulation of Internet of Things based on machine learning
.
Neural Computing and Applications
,
32
,
10
,
5399
5407
(
2020
).
26.
T.H. Ibrahim
Abaker
T.H,
N.B.
IbrarYaqoob
,
N B
Anuar
,
S.
Mokhtar
,
A.
Gani
and
S. Ullah
Khan
.
The rise of “big data” on cloud computing: Review and open research issues
.
Information Systems
,
47
,
98
115
(
2015
).
27.
Ji
,
Y. Li
,
W.
Qiu
,
U.
Awada
, and
K.
Li
,.
Big data processing in cloud computing environments.
(
12th International symposium on pervasive systems, algorithms and networks
,
2012
) pp.
17
23
.
28.
K.A.P.
Costaa
,
Joao P.
Papa
,
C.O.
Lisboa
,
R.
Munoz
and
V. H.
Albuquerque
.
Internet of Things: A survey on machine learning-based intrusion detection approaches
. In
Computer Networks.
151
,
147
157
(
2019
).
29.
K.
Alwasel
,
D. N.
Jha
,
F.
Habeeb
,
U.
Demirbaga
,
O.
Rana
,
T.
Baker
,
S.
Dustdar
,
M.
Villari
,
P.
James
,
E.
Solaiman
and
R.
Ranjan
,
IoT Sim-Osmosis: A framework for modeling and simulating IoT applications over an edge-cloud continuum.
Journal of Systems Architecture.
116
,
101956
(
2021
).
30.
W.Z.
Khan
, W. Z.,
Ahmed
,
E.
,
Hakak
,
S.
,
Yaqoob
,
I.
, &
Ahmed
,
A.
Edge computing: A survey.
Future Generation Computer Systems
,
97
,
219
235
(
2019
).
31.
N.
Mulani
,
A.
Pawar
,
P.
Mulay
, and
A.
Dani
,
Variant of cobweb clustering for privacy preservation in cloud db querying
.
Procedia Computer Science
,
50
,
363
368
(
2015
).
This content is only available via PDF.
You do not currently have access to this content.