With continuous evolution of deep learning and medical imaging technologies, the prospects for diagnosing and predicting Alzheimer’s disease (AD) are becoming brighter. Researchers have found a way to capture the profound characteristics of medical images using convolutional neural networks (CNN). While the Principal Component Analysis Network (PCANet) is a light-weight, deep learning network that creates multi-level filter banks to learn from samples, its adaptability has its limits. As a result, researchers have shifted to non-negative matrix factorization (NMF) to establish a higher order tensor that undergoes tensor decomposition (TD) to reduce the dimensionality in data and generate the end image features. Although deep learning is useful in detecting different stages of the disease using MRI images, there are challenges due to the limited MRI data available, which can make it difficult to achieve the desired level of accuracy. To counter this issue, researchers have developed a Deep Convolutional Generative Adversarial Network (DCGAN) to produce phoney images with features from the input dataset, expanding the number of images available for training and testing. The Generative Adversarial Network (GAN) approach is employed to produce convincing outputs based on the original information. With the use of this simulation method for supervised learning issues, GANs can be trained to learn and identify patterns in data inputs. In order to evaluate the efficacy of the technique, the researchers used three different datasets: two different versions of ADNI and one different version of OASIS. This project is aimed at achieving superior accuracy using minimal computing power, underscoring the importance of scientific progress in our collective pursuit of improved Alzheimer’s disease detection and prognosis.

1.
Lao
H
,
Zhang
X.
Regression and Classification of Alzheimer’s Disease Diagnosis Using NMF-TDNet Features From 3D Brain MR Image
.
IEEE J Biomed Health Inform.
2022
Mar.
2.
C. R.
Martin
,
V. R.
Preedy
, and
R. J.
Hunter
,
Nanomedicine and the Nervous System
,
Boca Raton, FL, USA
:
CRC Press
,
2012
.
3.
Alzheimer’s Association
, “
2018 Alzheimer’s disease facts and figures
,”
Alzheimer’s Dement.
, vol.
14
, no.
3
, pp.
367
429
,
2018
.
4.
A.
Khan
,
A.
Corbett
, and
C.
Ballard
, “
Emerging treatmentsfor Alzheimer’s disease for non-amyloid and non-tau targets
,”
Expert Rev. Neurotherapeutics
, vol.
17
, pp.
683
695
,
2017
.
5.
K. G.
Yiannopoulou
, and
S. G.
Papageorgiou
, “
Current and future treatments for Alzheimer’s disease
,”
Therapeutic Adv. Neuro. Disord.
, vol.
6
, no.
1
, pp.
19
33
,
2012
.
6.
T.
Tong
,
R.
Wolz
,
Q.
Gao
,
R.
Guerrero
,
J. V.
Hajnal
, and
D.
Rueckert
, “
Multiple instance learning for classification of dementia in brain MRI
,”
Med. Image Anal.
, vol.
18
, no.
5
, pp.
808
818
,
2014
.
7.
X.
Zhu
,
H.
Suk
,
D.
Shen
, “
A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis
,”
NeuroImage
, vol.
100
, pp.
91
105
,
2014
.
8.
Kun
Hu
,
Yijue
Wang
,
Kewei
Chen
,
Likun
Hou
,
Xiaoqun
Zhang
. “
Multi-scale features extraction from baseline structure MRI for MCI patient classification and AD early diagnosis
”,
Neurocomputing
,
2016
.
9.
Bai
,
T.
,
Du
,
M.
,
Zhang
,
L.
,
Ren
,
L.
,
Ruan
,
L.
,
Yang
,
Y.
,
Qian
,
G.
,
Meng
,
Z.
,
Zhao
,
L.
, &
Deen
,
M. J.
(
2022
).
A novel Alzheimer’s disease detection approach using GAN-based brain slice image enhancement
.
Neurocomputing
,
492
,
353
369
.
10.
P.
Padilla
et al, “
Analysis of SPECT brain images for the diagnosis of Alzheimer’s disease based on NMF for feature extraction
,”
Neurosci. Lett.
, vol.
479
, no.
3
, pp.
192
196
,
2010
.
11.
P.
Padilla
,
M.
Lopez
,
J. M.
Gorriz
,
J.
Ramírez
,
D.
Salas-Gonzalez
,
I.
Alvarez
, “
NMF-SVM based CAD tool applied to functional brain images for the diagnosis of Alzheimer’s disease
,”
IEEE Trans. Med. Imag.
, vol.
31
, no.
2
, pp.
207
216
, Feb.
2012
.
12.
A.
Besga
,
M.
Termenon
,
M.
Graña
,
J.
Echeveste
,
J. M.
Pérez
, and
A.
Gonzalez-Pinto
, “
Discovering Alzheimer’s disease and bipolar disorder white matter effects building computer aided diagnostic systems on brain diffusion tensor imaging features
,”
Neurosci. Lett.
, vol.
520
, no.
1
, pp.
71
76
,
2012
.
13.
A. T.
Du
et al., “
Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia
,”
Brain
, vol.
130
, pp.
1159
1166
,
2007
.
14.
V.
Singh
,
H.
Chertkow
,
J. P.
Lerch
,
A. C.
Evans
,
A. E.
Dorr
, and
N. J.
Kabani
, “
Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer’s disease
,”
Brain
, vol.
129
, no.
11
, pp.
2885
2893
,
2006
.
15.
B. C.
Dickerson
et al, “
Differential effects of aging and Alzheimer’s disease on medial temporal lobe cortical thickness and surface area
,”
Neurobiol. Aging
, vol.
30
, no.
3
, pp.
432
440
,
2009
.
16.
C.
Hutton
,
E.
De Vita
,
J.
Ashburner
,
R.
Deichmann
, and
R.
Turner
, “
Voxelbased cortical thickness measurements in MRI
,”
NeuroImage
, vol.
40
, no.
4
, pp.
1701
1710
,
2008
.
17.
Y.
Li
et al, “
Discriminant analysis of longitudinal cortical thickness changes in Alzheimer’s disease using dynamic and network features
,”
Neurobiol. Aging
, vol.
33
, no.
2
, pp.
427
e15
,
2012
.
18.
H. M. Tarek
Ullah
,
Zishan Ahmed
Onik
,
Riashat
Islam
,
Dip
Nandi
, “
Alzheimer’s Disease and Dementia Detection from 3D Brain MRI Data Using Deep Convolutional Neural Networks
”,
IEEE Conference for Convergence in Technology
, 978-1-5386-4273-3,
2018
.
19.
Priyanka
Shende
,
Mahesh
Pawar
,
Sandeep
Kakde
, “
A Brief Review on: MRI Images Reconstruction using GAN
”,
IEEE Conference on Communication and Signal Processing
, 978-1-5386-7596-0,
2019
.
20.
Liyan
Sun
,
Jiexiang
Wang
,
Yue
Huang
,
Xinghao
Ding
,
Hayit
Greenspan
, and
John
Paisley
, “
An Adversarial Learning Approach to Medical Image Synthesis for Lesion Detection
”,
IEEE Journal of Biomedical and Health Informatics
,
2303
2314
,
2020
21.
Mrinal Kanti
Baowaly
,
Chao-Lin
Liu
,
Kuan-Ta
Chun
Realistic Data Synthesis Using Enhanced Generative Adversarial Networks
”,
IEEE Conference on Artificial Intelligence and Knowledge Engineering
, 978-1-7281-1489-7, 2019.
22.
Changhee
Han
,
Leonardo
Rundo
,
Ryosuke
Araki
,
Yudai
Nagano
,
Yujiro
Furukawa
,
Giancarlo
Mauri
,
Hideki
Nakayama
and
Hideaki
Hayashi
, “
Combining Noise-toImage and Image-to-Image GANs: Brain MR Image Augmentation for Tumor Detection
”, arXiv preprint arXiv:1905.13456
23.
Huan
Yang
,
Kaijian
Xia
,
Bi
Anqi
,
Pengjiang
Qian
,
Mohammad R.
Khosravi
, “
Abdomen MRI Synthesis Based on Conditional GAN
”,
International Conference on Computer Science and Computer Intelligence
, 978-1-7281-5585-2,
2020
.
24.
Adeel
Akram
,
Nannan
Wang
,
Xinbo
Gao
,
Jie
Li
, “
Integrating GAN with CNN for Face Sketch Synthesis
”,
IEEE Conference on Computer and Communication
, 978-1-5386-8339-2,
2019
25.
Maayan
Frid-Adar
,
Eyal
Klang
,
Michal
Amitai
,
Jacob
Goldberger
,
Hayit
Greenspan
, “
Synthetic data augmentation using GAN for improved liver lesion classification
”,
IEEE International Symposium on Biomedical Imaging
, 1945-8452,
2018
.
26.
Thirumagal
E
,
K.
Saruladha
, “
Design of FCSE-GAN for Dissection of Brain Tumour in MRI
”,
IEEE Conference On Smart Technologies in Computing, Electrical and Electronics
, 978-1-7281-7214-9,
2020
27.
Qianqian
Zhang
,
Haifeng
Wang
,
Hongya
Lu
,
Daehen
Won
,
Sang Won
Yoon
, “
Medical Image Synthesis with Generative Adversarial Networks for Tissue Recognition
”,
IEEE International Conference on HealthCare Informatics
, 978-1-5386-5378-4,
2018
28.
Liu
,
Xin
&
Tosun
,
Duygu
&
Weiner
,
Michael
&
Schuff
,
Norbert
. (
2013
). “
Locally Linear Embedding (LLE) for MRI based Alzheimer’s Disease Classification
”.
NeuroImage.
29.
A.
Jayan
, F.
L
,
N. N
, S. S and D. M, “
Medical Imaging Using Deep Learning
,”
2022 International Conference on Innovations in Science and Technology for Sustainable Development (ICISTSD
),
Kollam, India
,
2022
, pp.
228
234
.
30.
K. Shirisha
Reddy
,
Nelikanti
Arjun
,
Kowkuri Hrushikesh
Mudiraj
, “
Regression and Classification of Alzheimer’s Disease Diagnosis Using NMF-TDNet Features from 3D Brain MR Image
,”
EasyChair Preprint no. 9727, EasyChair
31.
Sathyapriya Loganathan
S.
,
Geetha
C.
,
Nazaren
A.R.
,
Harin Fernandez Fernandez
M.
,
Autism spectrum disorder detection and classification using chaotic optimization based Bi-GRU network: An weighted average ensemble model
(
2023
)
Expert Systems with Applications
,
230
, art. no.
120613
, DOI:
This content is only available via PDF.
You do not currently have access to this content.