Twitter-based sentiment analysis (TSA) is a method for automatically processing digital data to extract opinions. This study can offer a plethora of data on consumer perceptions of different products. Yet, a machine would have trouble comprehending the subtleties that individuals can take away from the content on social networks because it is meant for people to read rather than machines. Because of this, the majority of research in this field has historically concentrated on categorizing opinions into one of three primary groups: positive, negative, or neutral. In this research, we examine alternative techniques and emotion models that might assist in teaching computers to recognize the emotions elicited by such confusing utterances. The use of different cutting-edge classifiers, including Naive Bayes and Logistic Regression algorithms that predict outcomes with high accuracy, is suggested in this study. A front end is also created utilizing the Django server.

1.
A.
Agarwal
et al, “Sentiment analysis of Twitter data,” in
Proc. LSM
,
Portland, OR, USA
,
2011
, pp.
30
38
.
2.
A.
Kennedy
and
D.
Inkpen
, “
Sentiment classification of movie reviews using contextual valence shifters
,”
Comput. Intell.
, vol.
22
, no.
2
, pp.
110
125
, May
2006
.
3.
Dashottar
,
R.
,
Jaiswal
,
A.
,
Jayapradha
,
J.
,
Prakash
,
M.
,
Framework to Analyze Twitter Data (Tweets) Using Deep Learning and NLP Techniques
,
Lecture Notes in Network and Systems
, pp.
389
402
,
2022
.
4.
M. Z.
Asghar
et al, “
T-SAF: Twitter sentiment analysis framework using a hybrid classification scheme
,”
Expert Syst.
, vol.
35
, no.
1
, Feb.
2018
, Art. no. e12233.
5.
A. P.
Jain
and
V. D.
Katkar
, “
Sentiments analysis of Twitter data using data mining
,” in
Proc. Int. Conf. Inf. Process. (ICIP)
, Dec.
2015
, pp.
807
810
.
6.
K.
Sailunaz
and
R.
Alhajj
, “
Emotion and sentiment analysis from Twitter text
,”
J. Comput. Sci.
, vol.
36
, Sep.
2019
, Art. no. 101003.
7.
S. E.
Saad
and
J.
Yang
, “
Twitter sentiment analysis based on ordinal regression
,”
IEEE Access
, vol.
7
, pp.
163677
163685
,
2019
.
8.
A.
Feizollah
,
S.
Ainin
,
N. B.
Anuar
,
N. A. B.
Abdullah
, and
M.
Hazim
, “
Halal products on Twitter: Data extraction and sentiment analysis using stack of deep learning algorithms
,”
IEEE Access
, vol.
7
, pp.
83354
83362
,
2019
.
9.
M.
Bibi
,
W.
Aziz
,
M.
Almaraashi
,
I. H.
Khan
,
M. S. A.
Nadeem
, and
N.
Habib
, “
A cooperative binary-clustering framework based on majority voting for Twitter sentiment analysis
,”
IEEE Access
, vol.
8
, pp.
68580
68592
,
2020
.
10.
Y.
Kirelli
and
S.
Arslankaya
, “
Sentiment analysis of shared tweets on global warming on Twitter with data mining methods: A case study on Turkish language
,”
Comput. Intell. Neurosci.
, vol.
2020
, pp.
1904172:1
1904172:9
, Sep.
2020
.
11.
A.
Kumar
and
A.
Jaiswal
, “
Systematic literature review of sentiment analysis on Twitter using soft computing techniques
,”
Concurrency Comput., Pract. Exp.
, vol.
32
, no.
1
, Jan. 2020, Art. no. e5107.
12.
M.
Pontiki
,
D.
Galanis
,
J.
Pavlopoulos
,
H.
Papageorgiou
,
I.
Androutsopoulos
, and
S.
Manandhar
, “
SemEval-2014 task 4: Aspect based sentiment analysis
,” in
Proc. 8th Int. Workshop Semantic Eval. (SemEval). Dublin, Ireland: Association for Computational Linguistics
,
2014
, pp.
27
35
. [Online]. Available: https://www.aclweb.org/anthology/S14-2004, doi: .
13.
M.
Pontiki
,
D.
Galanis
,
H.
Papageorgiou
,
S.
Manandhar
, and
I.
Androutsopoulos
, “
SemEval-2015 task 12: Aspect based sentiment analysis
,” in
Proc. 9th Int. Workshop Semantic Eval. (SemEval). Denver, CO, USA: Association for Computational Linguistics
, pp.
486
495
. [Online]. Available: https://www.aclweb.org/anthology/S15-2082, doi: .
14.
M.
Pontiki
,
D.
Galanis
,
H.
Papageorgiou
,
I.
Androutsopoulos
,
S.
Manandhar
,
M.
Al-Smadi
,
M.
Al-Ayyoub
,
Y.
Zhao
,
B.
Qin
,
O.
De Clercq
,
V.
Hoste
,
M.
Apidianaki
,
X.
Tannier
,
N.
Loukachevitch
,
E.
Kotelnikov
,
N.
Bel
,
S. M.
Jiménez-Zafra
, and
G.
Eryiğit
, “
SemEval2016 task 5: Aspect based sentiment analysis
,” in
Proc. 10th Int. Workshop Semantic Eval. (SemEval). San Diego, CA, USA: Association for Computational Linguistic
,
2016
, pp.
19
30
. [Online]. Available: https://www.aclweb.org/anthology/S16-1002, doi: .
15.
S.
Abudalfa
and
M.
Ahmed
, “
Survey on target dependent sentiment analysis of micro-blogs in social media
,” in Proc.
9th IEEE-GCC Conf. Exhib. (GCCCE)
,
Manama, Bahrain
, May
2017
, pp.
7
10
.
16.
M.
Jabreel
,
F.
Hassan
, and
A.
Moreno
, “Target-dependent sentiment analysis of tweets using bidirectional gated recurrent neural networks,” in
Advances in Hybridization of Intelligent Methods (Smart Innovation, Systems and Technologies)
, vol.
85
,
I.
Hatzilygeroudis
and
V.
Palade
, Eds.
Cham, Switzerland
:
Springer
,
2018
.
17.
B.
Liang
,
R.
Yin
,
J.
Du
,
L.
Gui
,
Y.
He
,
M.
Yang
, and
R.
Xu
, “
Embedding refinement framework for targeted aspect-based sentiment analysis
,”
IEEE Trans. Affect. Comput., early access
, Apr. 6,
2021
, doi: .
18.
D. T.
Vo
and
Y.
Zhang
, “
Target-dependent Twitter sentiment classification with rich automatic features
,” in
Proc. 24th Int. Joint Conf. Artif. Intell.
,
2015
, pp.
1
7
.
19.
N.
Zhao
,
H.
Gao
,
X.
Wen
, and
H.
Li
, “
Combination of convolutional neural network and gated recurrent unit for aspect-based sentiment analysis
,”
IEEE Access
, vol.
9
, pp.
15561
15569
,
2021
, doi: .
20.
E.
Cambria
and
B.
White
, “
Jumping NLP curves: A review of natural language processing research [review article]
,”
IEEE Comput. Intell. Mag.
, vol.
9
, no.
2
, pp.
48
57
, May
2014
.
21.
B.
Huang
and
K.
Carley
, “
Parameterized convolutional neural networks for aspect level sentiment classification
,” in
Proc. Conf. Empirical Methods Natural Lang. Process. Brussels, Belgium: Association for Computational Linguistics
,
2018
, pp.
1091
1096
, doi: .
22.
C.
Gan
,
L.
Wang
,
Z.
Zhang
, and
Z.
Wang
, “
Sparse attention based separable dilated convolutional neural network for targeted sentiment analysis
,”
Knowl.-Based Syst.
, vol.
188
, Jan.
2020
, Art. no. 104827.
23.
X.
Wang
,
F.
Li
,
Z.
Zhang
,
G.
Xu
,
J.
Zhang
, and
X.
Sun
, “
A unified positionaware convolutional neural network for aspect based sentiment analysis
,”
Neurocomputing
, vol.
450
, pp.
91
103
, Aug.
2021
.
24.
N.
Liu
and
B.
Shen
, “
Aspect-based sentiment analysis with gated alternate neural network
,”
Knowl.-Based Syst.
, vol.
188
, Jan. 2020, Art. no. 105010.
25.
K.
Shuang
,
Q.
Yang
,
J.
Loo
,
R.
Li
, and
M.
Gu
, “
Feature distillation network for aspect-based sentiment analysis
,”
Inf. Fusion
, vol.
61
, pp.
13
23
, Sep.
2020
.
26.
R.
Sequeira
,
A.
Gayen
,
N.
Ganguly
,
S. K.
Dandapat
, and
J.
Chandra
, “
A large-scale study of the Twitter follower network to characterize the spread of prescription drug abuse tweets
,”
IEEE Trans. Comput. Social Syst.
, vol.
6
, no.
6
, pp.
1232
1244
, Dec.
2019
.
This content is only available via PDF.
You do not currently have access to this content.