Levulinic acid (LA) is a short-chain fatty acid with ketone and carboxylic acid group which gives it superior characteristics as a building-block chemical for producing various chemicals, such as: Ƴ-valerolactone (GVL), methyltetrahydrofuran (MTHF), diphenolic acid (DPA), delta-aminolevulinic acid (DALA), and levulinate ester. Levulinic acid can be synthesized from various kinds of biomass and its derivatives, one of which is glucose. The reaction route of glucose hydrolysis to LA generally involves intermediates such as fructose, levoglucosan, and HMF, depending on the type of catalyst used. In this study, simulation of the kinetics of the hydrolysis reaction of glucose into LA was performed by simplifying the reaction scheme from reference data. The variables studied were temperature (140-160 oC) and concentration of hydrochloric acid catalyst (0.5-1.5 M). The hydrolysis data were simulated with three different models using MATLAB 2018a. The function of ode45 was used to solve the differential equations and fminsearch tool was used to minimize the kinetic parameter values. Chang’s model produces a greatest mean R2 (closer to one), which is considered more suitable than Mikola and Liang’s model.

1.
A.
Jain
,
Y.
Wei
, and
A.
Tietje
,
Biomass and Bioenergy
93
,
227
242
(
2016
).
2.
E. S.
Lopes
,
K. M. C.
Dominices
,
M. S.
Lopes
, and
L. P.
Tovar
,
Chem. Eng. Trans.
57
,
145
150
(
2017
).
3.
T.
Werpy
,
G.
Petersen
,
A.
Aden
,
J.
Bozell
,
J.
Holladay
,
J.
White
, and
A.
Manheim
,
Top Value Added Chemicals from Biomass – Vol. 1: Results of Screening for Potential Candidates from Sugars and Synthesis Gas
(
National Rewenable Energy Laboratory and Department of Energy
,
Washington D. C
.,
2004
).
4.
J. C.
van der Waal
and
E.
de Jong
, in
Industrial Biorenewables
, edited by P.
Dominiguez
de Maria
(
2016
), pp.
97
120
.
5.
P.
Daorattanachai
,
S.
Namuangruk
,
N.
Viriya-empikul
, and
N.
Laosiripojana
,
J. Ind. Eng. Chem.
18
,
1893
1901
(
2012
).
6.
Q.
Fang
and
M. A.
Hanna
,
Bioresour. Technol.
149
,
187
192
(
2002
).
7.
K.
Dussan
,
B.
Girisuta
,
D.
Haverty
,
J. J.
Leahy
, and
M. H. B.
Hayes
,
Bioresour. Technol.
149
,
216
224
(
2013
).
8.
J.
Feng
,
L.
Tong
,
Y.
Xu
,
J.
Jiang
,
V.
Hse
, and
Z.
Yang
,
Ind. Crops. Prod.
145
,
1
9
(
2020
).
9.
S.
Kang
,
J.
Fu
, and
G.
Zhang
,
Renew. Sustain. Energy Rev.
94
,
340
362
(
2018
).
10.
M. E.
Toif
,
M.
Hidayat
,
Rochmadi
, and
A.
Budiman
,
accepted to be published in IJTech
(
2022
).
11.
C.
Zhou
,
J.
Zhao
,
A.
Elgaism
,
A.
Yagoub
, and
H.
Ma
,
Egypt. J. Pet.
26
,
477
487
(
2017
).
12.
G.
Jeong
and
S.
Kim
,
Bioresour. Technol.
313
,
1
7
(
2020
).
13.
M.
Signoretto
,
S.
Taghayi
,
E.
Ghedini
, and
F.
Menegazo
,
Molecules
24
,
1
20
(
2019
).
14.
M. E.
Toif
,
M.
Hidayat
,
Rochmadi
, and
A.
Budiman
,
Sugar Tech.
25
,
234
244
(
2023
).
15.
M. E.
Toif
,
M.
Hidayat
,
Rochmadi
, and
A.
Budiman
,
AIP Conference Proceedings
2296
,
020064
(
2020
). .
16.
C.
Chang
,
X.
Ma
, and
P.
Cen
,
Chin. J. Chem. Eng.
14
,
708
712
(
2006
).
17.
M.
Mikola
,
J.
Ahola
, and
J.
Tanskanen
,
Chem. Eng. Res. Des.
8
,
291
297
(
2019
).
18.
C.
Liang
,
Y.
Hu
,
Y.
Wang
,
L.
Wu
, and
W.
Zhang
.
Process. Biochem.
73
.
124
131
(
2018
).
19.
M. E.
Toif
,
M.
Hidayat
,
Rochmadi
, and
A.
Budiman
,
BCREC
16
,
904
915
(
2021
).
20.
J.
Shen
and
C. E.
Wyman
,
AIChE. J.
58
,
236
246
(
2011
).
21.
N. I.
Villanueva
and
G.
Marzialetti
,
Catal. Today
302
,
100
107
(
2018
).
This content is only available via PDF.
You do not currently have access to this content.