The development of fossil energy consumption to catalyze the production of biofuels as renewable energy, especially heat and electricity generation, will raise a level of concern for the environment and health. Biomass waste that is produced into biofuel is very promising as a renewable energy raw material. The utilization of biofuels from biomass has the advantage of increasing the mitigation of greenhouse gas (GHG) emissions. One very promising way of generating electricity is by using co-firing biomass pellets, especially for renewable energy generation. There are several routes in thermochemical conversion, but torrefaction is one technology that can produce pyrolysis at low temperatures. In addition, co-firing biofuels can produce efficiently at temperatures of 200-300oC with low conversion losses. However, the conventional heating used today, especially in batch operations, adversely affects the torrefaction of palm oil. In addition, the biomass processing rate and throughput are very low and the heat transfer rate is very poor. The integrated microwave technology can provide a good and promising solution, especially in increasing the capacity for upscaling torrefaction technology. The production quantity offered is also higher with optimal volumetric heat transfer. Critically the discussion in this paper is to discuss the latest developments in palm oil waste torrefaction technology for the production of biochar energy with low water content and better durability and resilience. The microwave radiation used is intended for heating so that the catalytic reaction of torrefaction on energy activity is lower. Based on the continuous microwave system that is included in the reactor, it has enormous potential, especially during the torrefaction streamlining process. Thus, the energy produced is more friendly to the environment and health.

1.
S.
Soltanian
,
M.
Aghbashlo
,
S.
Farzad
,
M.
Tabatabaei
,
M.
Mandegari
, and
J.F.
Görgens
, “
Exergoeconomic analysis of lactic acid and power cogeneration from sugarcane residues through a biorefinery approach
,”
Renew. Energy
143
,
872
889
(
2019
).
2.
M.
Tabatabaei
,
M.
Aghbashlo
,
E.
Valijanian
,
H. Kazemi Shariat
Panahi
,
A.-S.
Nizami
,
H.
Ghanavati
,
A.
Sulaiman
,
S.
Mirmohamadsadeghi
, and
K.
Karimi
, “
A comprehensive review on recent biological innovations to improve biogas production, Part 2: Mainstream and downstream strategies
,”
Renew. Energy
146
,
1392
1407
(
2020
).
3.
R.
Rapier
, “
Fossil fuels still supply 84 percent of world energy—and other eye openers from BP’s annual review
,”
Forbes
https://Www.Forbes.Com/Sites/Rrapier/2020/06/20/Bp-Review-New-Highs-in-Global-Energy-Consumption-and-Carbon-Emissions-in-2019, (
2020
).
4.
Erdiwansyah
,
Mahidin
,
H.
Husin
,
Nasaruddin
,
M.
Zaki
, and
Muhibbuddin
, “
A critical review of the integration of renewable energy sources with various technologies
,”
Prot. Control Mod. Power Syst.
6
(
1
),
3
(
2021
).
5.
M.
Aghbashlo
,
W.
Peng
,
M.
Tabatabaei
,
S.A.
Kalogirou
,
S.
Soltanian
,
H.
Hosseinzadeh-Bandbafha
,
O.
Mahian
, and
S.S.
Lam
, “
Machine learning technology in biodiesel research: A review
,”
Prog. Energy Combust. Sci.
85
,
100904
(
2021
).
6.
G.E.
IEA
, “
CO2 Status Report 2018
,”
Int. Energy Agency, Paris
562
, (
2019
).
7.
H.W.
Lee
,
H.
Lee
,
Y.-M.
Kim
,
R.
Park
, and
Y.-K.
Park
, “
Recent application of biochar on the catalytic biorefinery and environmental processes
,”
Chinese Chem. Lett.
30
(
12
),
2147
2150
(
2019
).
8.
M.
Aghbashlo
,
M.
Mandegari
,
M.
Tabatabaei
,
S.
Farzad
,
M. Mojarab
Soufiyan
, and
J.F.
Görgens
, “
Exergy analysis of a lignocellulosic-based biorefinery annexed to a sugarcane mill for simultaneous lactic acid and electricity production
,”
Energy
149
,
623
638
(
2018
).
9.
S.
Soltanian
,
M.
Aghbashlo
,
F.
Almasi
,
H.
Hosseinzadeh-Bandbafha
,
A.-S.
Nizami
,
Y.S.
Ok
,
S.S.
Lam
, and
M.
Tabatabaei
, “
A critical review of the effects of pretreatment methods on the exergetic aspects of lignocellulosic biofuels
,”
Energy Convers. Manag.
212
,
112792
(
2020
).
10.
Y.W.
Cheng
,
C.C.
Chong
,
M.K.
Lam
,
W.H.
Leong
,
L.F.
Chuah
,
S.
Yusup
,
H.D.
Setiabudi
,
Y.
Tang
, and
J.W.
Lim
, “
Identification of microbial inhibitions and mitigation strategies towards cleaner bioconversions of palm oil mill effluent (POME): A review
,”
J. Clean. Prod.
280
,
124346
(
2021
).
11.
O.V.
Okoro
,
Z.
Sun
, and
J.
Birch
, “
Meat processing waste as a potential feedstock for biochemicals and biofuels – A review of possible conversion technologies
,”
J. Clean. Prod.
142
,
1583
1608
(
2017
).
12.
L.
Wenjing
,
J.
Chenxi
,
Z.
Junting
,
X.
Junqing
,
Y.
Dianhai
, and
L.
Guangming
, in edited by
A.
Khan
,
M.
Jawaid
,
A.
Pizzi
,
N.
Azum
,
A.
Asiri
, and
I.B.T.-A.T. for the C. of W. into F. and C. Isa
(
Woodhead Publishing
,
2021
), pp.
383
449
.
13.
S.S.
Lam
,
Y.F.
Tsang
,
P.N.Y.
Yek
,
R.K.
Liew
,
M.S.
Osman
,
W.
Peng
,
W.H.
Lee
, and
Y.-K.
Park
, “
Co-processing of oil palm waste and waste oil via microwave co-torrefaction: A waste reduction approach for producing solid fuel product with improved properties
,”
Process Saf. Environ. Prot.
128
,
30
35
(
2019
).
14.
Y.W.
Cheng
,
C.C.
Chong
,
S.P.
Lee
,
J.W.
Lim
,
T.Y.
Wu
, and
C.K.
Cheng
, “
Syngas from palm oil mill effluent (POME) steam reforming over lanthanum cobaltite: Effects of net-basicity
,”
Renew. Energy
148
,
349
362
(
2020
).
15.
P.N.Y.
Yek
,
W.
Peng
,
C.C.
Wong
,
R.K.
Liew
,
Y.L.
Ho
,
W.A. Wan
Mahari
,
E.
Azwar
,
T.Q.
Yuan
,
M.
Tabatabaei
,
M.
Aghbashlo
,
C.
Sonne
, and
S.S.
Lam
, “
Engineered biochar via microwave CO2 and steam pyrolysis to treat carcinogenic Congo red dye
,”
J. Hazard. Mater.
395
,
122636
(
2020
).
16.
S.
Ge
,
P.N.Y.
Yek
,
Y.W.
Cheng
,
C.
Xia
,
W.A. Wan
Mahari
,
R.K.
Liew
,
W.
Peng
,
T.-Q.
Yuan
,
M.
Tabatabaei
,
M.
Aghbashlo
,
C.
Sonne
, and
S.S.
Lam
, “
Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach
,”
Renew. Sustain. Energy Rev.
135
,
110148
(
2021
).
17.
P.
Moriarty
, and
D.
Honnery
, in
Manag. Glob. Warm.
(
Elsevier
,
2019
), pp.
221
235
.
18.
Erdiwansyah
,
Mahidin
,
R.
Mamat
,
M.S.M.
Sani
,
F.
Khoerunnisa
, and
A.
Kadarohman
, “
Target and demand for renewable energy across 10 ASEAN countries by 2040
,”
Electr. J.
32
(
10
),
106670
(
2019
).
19.
S.Y.
Foong
,
R.K.
Liew
,
Y.
Yang
,
Y.W.
Cheng
,
P.N.Y.
Yek
,
W.A. Wan
Mahari
,
X.Y.
Lee
,
C.S.
Han
,
D.-V.N.
Vo
,
Q.
Van Le
,
M.
Aghbashlo
,
M.
Tabatabaei
,
C.
Sonne
,
W.
Peng
, and
S.S.
Lam
, “
Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions
,”
Chem. Eng. J.
389
,
124401
(
2020
).
20.
J.D.
Morris
,
S.S.
Daood
,
S.
Chilton
, and
W.
Nimmo
, “
Mechanisms and mitigation of agglomeration during fluidized bed combustion of biomass: A review
,”
Fuel
230
,
452
473
(
2018
).
21.
M.
Rover
,
R.
Smith
, and
R.C.
Brown
, “
Enabling biomass combustion and co-firing through the use of Lignocol
,”
Fuel
211
,
312
317
(
2018
).
22.
A.
Sims
,
M.
Jeffers
,
S.
Talapatra
,
K.
Mondal
,
S.
Pokhrel
,
L.
Liang
,
X.
Zhang
,
A.L.
Elias
,
B.G.
Sumpter
,
V.
Meunier
, and
M.
Terrones
, “
Hydro-deoxygenation of CO on functionalized carbon nanotubes for liquid fuels production
,”
Carbon N. Y.
121
,
274
284
(
2017
).
23.
C.C.
Chong
,
Y.W.
Cheng
,
H.D.
Setiabudi
,
N.
Ainirazali
,
D.-V.N.
Vo
, and
B.
Abdullah
, “
Dry reforming of methane over Ni/dendritic fibrous SBA-15 (Ni/DFSBA-15): Optimization, mechanism, and regeneration studies
,”
Int. J. Hydrogen Energy
45
(
15
),
8507
8525
(
2020
).
24.
S.S.
Lam
,
W.A. Wan
Mahari
,
A.
Jusoh
,
C.T.
Chong
,
C.L.
Lee
, and
H.A.
Chase
, “
Pyrolysis using microwave absorbents as reaction bed: An improved approach to transform used frying oil into biofuel product with desirable properties
,”
J. Clean. Prod.
147
,
263
272
(
2017
).
25.
W.A. Wan
Mahari
,
C.T.
Chong
,
W.H.
Lam
,
T.N.S.T.
Anuar
,
N.L.
Ma
,
M.D.
Ibrahim
, and
S.S.
Lam
, “
Microwave co-pyrolysis of waste polyolefins and waste cooking oil: Influence of N2 atmosphere versus vacuum environment
,”
Energy Convers. Manag.
171
,
1292
1301
(
2018
).
26.
Y.
Uemura
,
V.
Sellappah
,
T.H.
Trinh
,
S.
Hassan
, and
K.
Tanoue
, “
Torrefaction of empty fruit bunches under biomass combustion gas atmosphere
,”
Bioresour. Technol.
243
,
107
117
(
2017
).
27.
P.
Siritheerasas
,
P.
Waiyanate
,
H.
Sekiguchi
, and
S.
Kodama
, in
Key Eng. Mater.
(
Trans Tech Publ
,
2017
), pp.
156
160
.
28.
V.
Sellappah
,
Y.
Uemura
,
S.
Hassan
,
M.H.
Sulaiman
, and
M.K.
Lam
, “
Torrefaction of Empty Fruit Bunch in the Presence of Combustion Gas
,”
Procedia Eng.
148
,
750
757
(
2016
).
29.
P.
Das
, C. V.P.,
T.
Mathimani
, and
A.
Pugazhendhi
, “
A comprehensive review on the factors affecting thermochemical conversion efficiency of algal biomass to energy
,”
Sci. Total Environ.
766
,
144213
(
2021
).
30.
B.
Vreugdenhil
,
P.
Kroon
, and
S.
Leiser
, “
Complying With The EPA Clean Power Plan–A Techno-Economical Overview
,” (
2015
).
31.
G.-A.
Tsalidis
,
Y.
Joshi
,
G.
Korevaar
, and
W.
de Jong
, “
Life cycle assessment of direct co-firing of torrefied and/or pelletised woody biomass with coal in The Netherlands
,”
J. Clean. Prod.
81
,
168
177
(
2014
).
32.
A.A.
Rentizelas
, and
J.
Li
, “
Techno-economic and carbon emissions analysis of biomass torrefaction downstream in international bioenergy supply chains for co-firing
,”
Energy
114
,
129
142
(
2016
).
33.
Y.W.
Cheng
,
C.C.
Chong
,
C.K.
Cheng
,
K.H.
Ng
,
T.
Witoon
, and
J.C.
Juan
, “
Ethylene production from ethanol dehydration over mesoporous SBA-15 catalyst derived from palm oil clinker waste
,”
J. Clean. Prod.
249
,
119323
(
2020
).
34.
Y.
Yang
,
M.
Sun
,
M.
Zhang
,
K.
Zhang
,
D.
Wang
, and
C.
Lei
, “
A fundamental research on synchronized torrefaction and pelleting of biomass
,”
Renew. Energy
142
,
668
676
(
2019
).
35.
Y.
Uemura
,
W.N.
Omar
,
T.
Tsutsui
, and
S.B.
Yusup
, “
Torrefaction of oil palm wastes
,”
Fuel
90
(
8
),
2585
2591
(
2011
).
36.
A.
Kushairi
,
M.
Ong-Abdullah
,
B.
Nambiappan
,
E.
Hishamuddin
,
M.
Bidin
,
R.
Ghazali
,
V.
Subramaniam
,
S.
Sundram
, and
G.K.A.
Parveez
, “
Oil palm economic performance in Malaysia and R&D progress in 2018
,”
J. Oil Palm Res.
31
(
2
),
165
194
(
2019
).
37.
G.K.A.
Parveez
,
E.
Hishamuddin
,
S.K.
Loh
,
M.
Ong-Abdullah
,
K.M.
Salleh
,
M.
Bidin
,
S.
Sundram
,
Z.A.A.
Hasan
, and
Z.
Idris
, “
Oil palm economic performance in Malaysia and R&D progress in 2019
,”
J. Oil Palm Res.
32
(
2
),
159
190
(
2020
).
38.
G.K.A.
Parveez
,
A.H.A.
Tarmizi
,
S.
Sundram
,
S.K.
Loh
,
M.
Ong-Abdullah
,
K.D.P.
Palam
,
K.M.
Salleh
,
S.M.
Ishak
, and
Z.
Idris
, “
Oil palm economic performance in Malaysia and R&D progress in 2020
,”
J. Oil Palm Res
33
(
2
), (
2021
).
39.
M.
Rudolfsson
,
W.
Stelte
, and
T.A.
Lestander
, “
Process optimization of combined biomass torrefaction and pelletization for fuel pellet production – A parametric study
,”
Appl. Energy
140
,
378
384
(
2015
).
40.
O.
Sippula
,
H.
Lamberg
,
J.
Leskinen
,
J.
Tissari
, and
J.
Jokiniemi
, “
Emissions and ash behavior in a 500kW pellet boiler operated with various blends of woody biomass and peat
,”
Fuel
202
,
144
153
(
2017
).
41.
S.K.
Loh
, “
The potential of the Malaysian oil palm biomass as a renewable energy source
,”
Energy Convers. Manag.
141
,
285
298
(
2017
).
42.
M.A.A.
Mohammed
,
A.
Salmiaton
,
W.A.K.G. Wan
Azlina
,
M.S. Mohammad
Amran
,
A.
Fakhru’l-Razi
, and
Y.H.
Taufiq-Yap
, “
Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia
,”
Renew. Sustain. Energy Rev.
15
(
2
),
1258
1270
(
2011
).
43.
Y.S.
Salim
,
A.A.-A.
Abdullah
, C.S.S.@
M.
Nasri
, and
M.N.M.
Ibrahim
, “
Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and characterisation of its blend with oil palm empty fruit bunch fibers
,”
Bioresour. Technol.
102
(
3
),
3626
3628
(
2011
).
44.
M.R.
Islam
,
A.
Gupta
,
M.
Rivai
, and
M.D.H.
Beg
, “
Characterization of microwave-treated oil palm empty fruit bunch/glass fibre/polypropylene composites
,”
J. Thermoplast. Compos. Mater.
30
(
7
),
986
1002
(
2017
).
45.
H.P.S.A.
Khalil
,
M.Y.N.
Firdaus
,
M.
Jawaid
,
M.
Anis
,
R.
Ridzuan
, and
A.R.
Mohamed
, “
Development and material properties of new hybrid medium density fibreboard from empty fruit bunch and rubberwood
,”
Mater. Des.
31
(
9
),
4229
4236
(
2010
).
46.
A.
Nurdiawati
,
S.
Novianti
,
I.N.
Zaini
,
B.
Nakhshinieva
,
H.
Sumida
,
F.
Takahashi
, and
K.
Yoshikawa
, “
Evaluation of Hydrothermal Treatment of Empty Fruit Bunch for Solid Fuel and Liquid Organic Fertilizer Co-Production
,”
Energy Procedia
79
,
226
232
(
2015
).
47.
Z.K.
Liew
,
Y.J.
Chan
,
Z.T.
Ho
,
Y.H.
Yip
,
M.C.
Teng
,
A.I.T. Ameer Abbas
bin
,
S.
Chong
,
P.L.
Show
, and
C.L.
Chew
, “
Biogas production enhancement by co-digestion of empty fruit bunch (EFB) with palm oil mill effluent (POME): Performance and kinetic evaluation
,”
Renew. Energy
179
,
766
777
(
2021
).
48.
S.
Saelor
,
P.
Kongjan
, and
S.
O-Thong
, “
Biogas Production from Anaerobic Co-digestion of Palm Oil Mill Effluent and Empty Fruit Bunches
,”
Energy Procedia
138
,
717
722
(
2017
).
49.
S.
O-Thong
,
K.
Boe
, and
I.
Angelidaki
, “
Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production
,”
Appl. Energy
93
,
648
654
(
2012
).
50.
Z.
Khounani
,
F.
Nazemi
,
M.
Shafiei
,
M.
Aghbashlo
, and
M.
Tabatabaei
, “
Techno-economic aspects of a safflower-based biorefinery plant co-producing bioethanol and biodiesel
,”
Energy Convers. Manag.
201
,
112184
(
2019
).
51.
H. Kazemi Shariat
Panahi
,
M.
Dehhaghi
,
M.
Aghbashlo
,
K.
Karimi
, and
M.
Tabatabaei
, “
Conversion of residues from agro-food industry into bioethanol in Iran: An under-valued biofuel additive to phase out MTBE in gasoline
,”
Renew. Energy
145
,
699
710
(
2020
).
52.
M.
Aghbashlo
,
M.
Tabatabaei
,
S.
Soltanian
,
H.
Ghanavati
, and
A.
Dadak
, “
Comprehensive exergoeconomic analysis of a municipal solid waste digestion plant equipped with a biogas genset
,”
Waste Manag.
87
,
485
498
(
2019
).
53.
M.
Aghbashlo
,
M.
Tabatabaei
,
S.
Soltanian
, and
H.
Ghanavati
, “
Biopower and biofertilizer production from organic municipal solid waste: An exergoenvironmental analysis
,”
Renew. Energy
143
,
64
76
(
2019
).
54.
R.K.
Liew
,
E.
Azwar
,
P.N.Y.
Yek
,
X.Y.
Lim
,
C.K.
Cheng
,
J.-H.
Ng
,
A.
Jusoh
,
W.H.
Lam
,
M.D.
Ibrahim
,
N.L.
Ma
, and
S.S.
Lam
, “
Microwave pyrolysis with KOH/NaOH mixture activation: A new approach to produce micro-mesoporous activated carbon for textile dye adsorption
,”
Bioresour. Technol.
266
,
1
10
(
2018
).
55.
H.
Zhang
,
Z.
Gao
,
W.
Ao
,
J.
Li
,
G.
Liu
,
J.
Fu
,
C.
Ran
,
X.
Mao
,
Q.
Kang
,
Y.
Liu
, and
J.
Dai
, “
Microwave-assisted pyrolysis of textile dyeing sludge using different additives
,”
J. Anal. Appl. Pyrolysis
127
,
140
149
(
2017
).
56.
H.
Zhang
,
Z.
Gao
,
Y.
Liu
,
C.
Ran
,
X.
Mao
,
Q.
Kang
,
W.
Ao
,
J.
Fu
,
J.
Li
,
G.
Liu
, and
J.
Dai
, “
Microwave-assisted pyrolysis of textile dyeing sludge, and migration and distribution of heavy metals
,”
J. Hazard. Mater.
355
,
128
135
(
2018
).
57.
C.
Ran
,
Y.
Liu
,
A.R.
Siddiqui
,
A.A.
Siyal
,
X.
Mao
,
Q.
Kang
,
J.
Fu
,
W.
Ao
, and
J.
Dai
, “
Pyrolysis of textile dyeing sludge in fluidized bed and microwave-assisted auger reactor: Comparison, migration and distribution of heavy metals
,”
Energy
182
,
337
348
(
2019
).
58.
Z.
Weng
,
E.
Kanchanatip
,
D.
Hantoko
,
M.
Yan
,
H.
Su
,
S.
Zhang
, and
G.
Wang
, “
Improving supercritical water gasification of sludge by oil palm empty fruit bunch addition: Promotion of syngas production and heavy metal stabilization
,”
Chinese J. Chem. Eng.
28
(
1
),
293
298
(
2020
).
59.
Q.
Wu
,
T.C.
Qiang
,
G.
Zeng
,
H.
Zhang
,
Y.
Huang
, and
Y.
Wang
, “
Sustainable and renewable energy from biomass wastes in palm oil industry: A case study in Malaysia
,”
Int. J. Hydrogen Energy
42
(
37
),
23871
23877
(
2017
).
60.
J.J.
Chew
,
M.
Soh
,
J.
Sunarso
,
S.-T.
Yong
,
V.
Doshi
, and
S.
Bhattacharya
, “
Isothermal kinetic study of CO2 gasification of torrefied oil palm biomass
,”
Biomass and Bioenergy
134
,
105487
(
2020
).
61.
H. Kazemi Shariat
Panahi
,
M.
Dehhaghi
,
Y.S.
Ok
,
A.-S.
Nizami
,
B.
Khoshnevisan
,
S.I.
Mussatto
,
M.
Aghbashlo
,
M.
Tabatabaei
, and
S.S.
Lam
, “
A comprehensive review of engineered biochar: Production, characteristics, and environmental applications
,”
J. Clean. Prod.
270
,
122462
(
2020
).
62.
Y.L.
Chiew
, and
S.
Shimada
, “
Current state and environmental impact assessment for utilizing oil palm empty fruit bunches for fuel, fiber and fertilizer – A case study of Malaysia
,”
Biomass and Bioenergy
51
,
109
124
(
2013
).
63.
B.
Emadi
,
K.L.
Iroba
, and
L.G.
Tabil
, “
Effect of polymer plastic binder on mechanical, storage and combustion characteristics of torrefied and pelletized herbaceous biomass
,”
Appl. Energy
198
,
312
319
(
2017
).
64.
J.
Peng
,
X.T.
Bi
,
C.J.
Lim
,
H.
Peng
,
C.S.
Kim
,
D.
Jia
, and
H.
Zuo
, “
Sawdust as an effective binder for making torrefied pellets
,”
Appl. Energy
157
,
491
498
(
2015
).
65.
X.J.
Lee
,
L.Y.
Lee
,
S.
Gan
,
S.
Thangalazhy-Gopakumar
, and
H.K.
Ng
, “
Biochar potential evaluation of palm oil wastes through slow pyrolysis: thermochemical characterization and pyrolytic kinetic studies
,”
Bioresour. Technol.
236
,
155
163
(
2017
).
66.
Y.H.
Chan
,
S.
Yusup
,
A.T.
Quitain
,
Y.
Uemura
, and
M.
Sasaki
, “
Bio-oil production from oil palm biomass via subcritical and supercritical hydrothermal liquefaction
,”
J. Supercrit. Fluids
95
,
407
412
(
2014
).
67.
A.A.
Salema
, and
M.T.
Afzal
, “
Numerical simulation of heating behaviour in biomass bed and pellets under multimode microwave system
,”
Int. J. Therm. Sci.
91
,
12
24
(
2015
).
68.
B.
Ghiasi
,
L.
Kumar
,
T.
Furubayashi
,
C.J.
Lim
,
X.
Bi
,
C.S.
Kim
, and
S.
Sokhansanj
, “
Densified biocoal from woodchips: Is it better to do torrefaction before or after densification?
,”
Appl. Energy
134
,
133
142
(
2014
).
69.
S.
Ren
,
H.
Lei
,
L.
Wang
,
Q.
Bu
,
Y.
Wei
,
J.
Liang
,
Y.
Liu
,
J.
Julson
,
S.
Chen
, and
J.
Wu
, “
Microwave torrefaction of Douglas fir sawdust pellets
,”
Energy & Fuels
26
(
9
),
5936
5943
(
2012
).
70.
T.
Yoshida
,
T.
Nomura
,
H.
Gensai
,
H.
Watada
,
T.
Sano
, and
S.
Ohara
, “
Upgraded Pellet Making by Torrefaction—Torrefaction of Japanese Wood Pellets
,”
J. Sustain. Bioenergy Syst.
5
(
03
),
82
(
2015
).
71.
G.
Thek
, and
I.
Obernberger
, “
The pellet handbook: the production and thermal utilization of biomass pellets
,” (
2012
).
72.
N.
Abdullah
,
F.
Sulaiman
, and
H.
Gerhauser
, “
Characterisation of oil palm empty fruit bunches for fuel application
,”
J. Phys. Sci
22
(
1
),
1
24
(
2011
).
73.
E.
Sermyagina
,
J.
Saari
,
B.
Zakeri
,
J.
Kaikko
, and
E.
Vakkilainen
, “
Effect of heat integration method and torrefaction temperature on the performance of an integrated CHP-torrefaction plant
,”
Appl. Energy
149
,
24
34
(
2015
).
74.
W.-H.
Chen
,
P.-C.
Kuo
,
S.-H.
Liu
, and
W.
Wu
, “
Thermal characterization of oil palm fiber and eucalyptus in torrefaction
,”
Energy
71
,
40
48
(
2014
).
75.
E.
Barta-Rajnai
,
L.
Wang
,
Z.
Sebestyén
,
Z.
Barta
,
R.
Khalil
,
Ø.
Skreiberg
,
M.
Grønli
,
E.
Jakab
, and
Z.
Czégény
, “
Effect of temperature and duration of torrefaction on the thermal behavior of stem wood, bark, and stump of spruce
,”
Energy Procedia
105
,
551
556
(
2017
).
76.
D.
Ciolkosz
, and
R.
Wallace
, “
A review of torrefaction for bioenergy feedstock production
,”
Biofuels, Bioprod. Biorefining
5
(
3
),
317
329
(
2011
).
77.
J.-L.
Wen
,
S.-L.
Sun
,
T.-Q.
Yuan
,
F.
Xu
, and
R.-C.
Sun
, “
Understanding the chemical and structural transformations of lignin macromolecule during torrefaction
,”
Appl. Energy
121
,
1
9
(
2014
).
78.
W.A. Wan
Mahari
,
W.L.
Nam
,
C.
Sonne
,
W.
Peng
,
X.Y.
Phang
,
R.K.
Liew
,
P.N.Y.
Yek
,
X.Y.
Lee
,
O.W.
Wen
,
P.L.
Show
,
W.-H.
Chen
,
J.-S.
Chang
, and
S.S.
Lam
, “
Applying microwave vacuum pyrolysis to design moisture retention and pH neutralizing palm kernel shell biochar for mushroom production
,”
Bioresour. Technol.
312
,
123572
(
2020
).
79.
P.
Brassard
,
S.
Godbout
, and
L.
Hamelin
, “
Framework for consequential life cycle assessment of pyrolysis biorefineries: A case study for the conversion of primary forestry residues
,”
Renew. Sustain. Energy Rev.
138
,
110549
(
2021
).
80.
A.
Zheng
,
L.
Li
,
N.
Tippayawong
,
Z.
Huang
,
K.
Zhao
,
G.
Wei
,
Z.
Zhao
, and
H.
Li
, “
Reducing emission of NOx and SOx precursors while enhancing char production from pyrolysis of sewage sludge by torrefaction pretreatment
,”
Energy
192
,
116620
(
2020
).
81.
A.
Leontiev
,
B.
Kichatov
,
A.
Korshunov
,
A.
Kiverin
,
N.
Medvetskaya
, and
K.
Melnikova
, “
Oxidative torrefaction of briquetted birch shavings in the bentonite
,”
Energy
165
,
303
313
(
2018
).
82.
C.
Zhang
,
S.-H.
Ho
,
W.-H.
Chen
,
Y.
Fu
,
J.-S.
Chang
, and
X.
Bi
, “
Oxidative torrefaction of biomass nutshells: Evaluations of energy efficiency as well as biochar transportation and storage
,”
Appl. Energy
235
,
428
441
(
2019
).
83.
Z.
Wang
,
H.
Li
,
C.J.
Lim
, and
J.R.
Grace
, “
Oxidative torrefaction of spruce-pine-fir sawdust in a slot-rectangular spouted bed reactor
,”
Energy Convers. Manag.
174
,
276
287
(
2018
).
84.
S.
Zhang
,
T.
Chen
,
Y.
Xiong
, and
Q.
Dong
, “
Effects of wet torrefaction on the physicochemical properties and pyrolysis product properties of rice husk
,”
Energy Convers. Manag.
141
,
403
409
(
2017
).
85.
S.
Tong
,
L.
Xiao
,
X.
Li
,
X.
Zhu
,
H.
Liu
,
G.
Luo
,
N.
Worasuwannarak
,
S.
Kerdsuwan
,
B.
Fungtammasan
, and
H.
Yao
, “
A gas-pressurized torrefaction method for biomass wastes
,”
Energy Convers. Manag.
173
,
29
36
(
2018
).
86.
T.
Itoh
,
K.
Iwabuchi
,
N.
Maemoku
,
I.
Sasaki
, and
K.
Taniguro
, “
A new torrefaction system employing spontaneous self-heating of livestock manure under elevated pressure
,”
Waste Manag.
85
,
66
72
(
2019
).
87.
R.
Blissett
,
R.
Sommerville
,
N.
Rowson
,
J.
Jones
, and
B.
Laughlin
, “
Valorisation of rice husks using a TORBED® combustion process
,”
Fuel Process. Technol.
159
,
247
255
(
2017
).
88.
J.
Ratte
,
E.
Fardet
,
D.
Mateos
, and
J.-S.
Héry
, “
Mathematical modelling of a continuous biomass torrefaction reactor: TORSPYDTM column
,”
Biomass and Bioenergy
35
(
8
),
3481
3495
(
2011
).
89.
K.M.
Sabil
,
M.A.
Aziz
,
B.
Lal
, and
Y.
Uemura
, “
Synthetic indicator on the severity of torrefaction of oil palm biomass residues through mass loss measurement
,”
Appl. Energy
111
,
821
826
(
2013
).
90.
P.N.Y.
Yek
,
Y.W.
Cheng
,
R.K.
Liew
,
W.A. Wan
Mahari
,
H.C.
Ong
,
W.-H.
Chen
,
W.
Peng
,
Y.-K.
Park
,
C.
Sonne
,
S.H.
Kong
,
M.
Tabatabaei
,
M.
Aghbashlo
, and
S.S.
Lam
, “
Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review
,”
Renew. Sustain. Energy Rev.
151
,
111645
(
2021
).
91.
A.M.
Pantaleo
,
J.
Fordham
,
O.A.
Oyewunmi
, and
C.N.
Markides
, “
Intermittent waste heat recovery via ORC in coffee torrefaction
,”
Energy Procedia
142
,
1714
1720
(
2017
).
92.
F.
Campuzano
,
R.C.
Brown
, and
J.D.
Martínez
, “
Auger reactors for pyrolysis of biomass and wastes
,”
Renew. Sustain. Energy Rev.
102
,
372
409
(
2019
).
93.
F. Codignole
Luz
,
S.
Cordiner
,
A.
Manni
,
V.
Mulone
, and
V.
Rocco
, “
Biomass fast pyrolysis in screw reactors: Prediction of spent coffee grounds bio-oil production through a monodimensional model
,”
Energy Convers. Manag.
168
,
98
106
(
2018
).
94.
F. Codignole
Luz
,
S.
Cordiner
,
A.
Manni
,
V.
Mulone
, and
V.
Rocco
, “
Biomass fast pyrolysis in a shaftless screw reactor: A 1-D numerical model
,”
Energy
157
,
792
805
(
2018
).
95.
F. Codignole
Luz
,
S.
Cordiner
,
A.
Manni
,
V.
Mulone
, and
V.
Rocco
, “
Pyrolysis in screw reactors: a 1-D numerical tool
,”
Energy Procedia
126
,
683
689
(
2017
).
96.
M.J.
Wang
,
Y.F.
Huang
,
P.T.
Chiueh
,
W.H.
Kuan
, and
S.L.
Lo
, “
Microwave-induced torrefaction of rice husk and sugarcane residues
,”
Energy
37
(
1
),
177
184
(
2012
).
97.
K.
Kang
,
S.
Nanda
,
S.S.
Lam
,
T.
Zhang
,
L.
Huo
, and
L.
Zhao
, “
Enhanced fuel characteristics and physical chemistry of microwave hydrochar for sustainable fuel pellet production via co-densification
,”
Environ. Res.
186
,
109480
(
2020
).
98.
D.J.
Hwang
,
J.Y.
Ryu
,
Y.H.
Yu
,
K.H.
Cho
,
J.W.
Ahn
,
C.
Han
, and
J.D.
Lee
, “
Characteristics of precipitated calcium carbonate by hydrothermal and carbonation processes with mega-crystalline calcite using rotary microwave kiln
,”
J. Ind. Eng. Chem.
20
(
5
),
2727
2734
(
2014
).
99.
B.
Batidzirai
,
A.P.R.
Mignot
,
W.B.
Schakel
,
H.M.
Junginger
, and
A.P.C.
Faaij
, “
Biomass torrefaction technology: Techno-economic status and future prospects
,”
Energy
62
,
196
214
(
2013
).
100.
B.
Yan
,
L.
Jiao
,
J.
Li
,
X.
Zhu
,
S.
Ahmed
, and
G.
Chen
, “
Investigation on microwave torrefaction: Parametric influence, TG-MS-FTIR analysis, and gasification performance
,”
Energy
220
,
119794
(
2021
).
101.
B.A.
Fu
,
M.Q.
Chen
, and
J.J.
Song
, “
Investigation on the microwave drying kinetics and pumping phenomenon of lignite spheres
,”
Appl. Therm. Eng.
124
,
371
380
(
2017
).
102.
P.
Natarajan
,
D. V
Suriapparao
, and
R.
Vinu
, “
Microwave torrefaction of Prosopis juliflora: Experimental and modeling study
,”
Fuel Process. Technol.
172
,
86
96
(
2018
).
103.
S.K.
Satpathy
,
L.G.
Tabil
,
V.
Meda
,
S.N.
Naik
, and
R.
Prasad
, “
Torrefaction of wheat and barley straw after microwave heating
,”
Fuel
124
,
269
278
(
2014
).
104.
Y.F.
Huang
,
W.R.
Chen
,
P.T.
Chiueh
,
W.H.
Kuan
, and
S.L.
Lo
, “
Microwave torrefaction of rice straw and pennisetum
,”
Bioresour. Technol.
123
,
1
7
(
2012
).
105.
A.
Arshanitsa
,
T.
Dizhbite
,
O.
Bikovens
,
G.
Pavlovich
,
A.
Andersone
, and
G.
Telysheva
, “
Effects of microwave treatment on the chemical structure of lignocarbohydrate matrix of softwood and hardwood
,”
Energy & Fuels
30
(
1
),
457
464
(
2016
).
106.
Y.-F.
Huang
,
H.-T.
Sung
,
P.-T.
Chiueh
, and
S.-L.
Lo
, “
Microwave torrefaction of sewage sludge and leucaena
,”
J. Taiwan Inst. Chem. Eng.
70
,
236
243
(
2017
).
107.
K.L.
Iroba
,
O.-D.
Baik
, and
L.G.
Tabil
, “
Torrefaction of biomass from municipal solid waste fractions II: Grindability characteristics, higher heating value, pelletability and moisture adsorption
,”
Biomass and Bioenergy
106
,
8
20
(
2017
).
108.
K.L.
Iroba
,
O.-D.
Baik
, and
L.G.
Tabil
, “
Torrefaction of biomass from municipal solid waste fractions I: Temperature profiles, moisture content, energy consumption, mass yield, and thermochemical properties
,”
Biomass and Bioenergy
105
,
320
330
(
2017
).
109.
H.
Li
,
Y.
Qu
,
Y.
Yang
,
S.
Chang
, and
J.
Xu
, “
Microwave irradiation – A green and efficient way to pretreat biomass
,”
Bioresour. Technol.
199
,
34
41
(
2016
).
110.
M.A.H. Mohd
Fuad
,
M.F.
Hasan
, and
F.N.
Ani
, “
Microwave torrefaction for viable fuel production: A review on theory, affecting factors, potential and challenges
,”
Fuel
253
,
512
526
(
2019
).
111.
C.
Zhang
,
S.-H.
Ho
,
W.-H.
Chen
,
C.F.
Eng
, and
C.-T.
Wang
, “
Simultaneous implementation of sludge dewatering and solid biofuel production by microwave torrefaction
,”
Environ. Res.
195
,
110775
(
2021
).
112.
S.
Ren
,
H.
Lei
,
L.
Wang
,
G.
Yadavalli
,
Y.
Liu
, and
J.
Julson
, “
The integrated process of microwave torrefaction and pyrolysis of corn stover for biofuel production
,”
J. Anal. Appl. Pyrolysis
108
,
248
253
(
2014
).
113.
L.
Burhenne
,
J.
Messmer
,
T.
Aicher
, and
M.-P.
Laborie
, “
The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis
,”
J. Anal. Appl. Pyrolysis
101
,
177
184
(
2013
).
114.
S.S.
Lam
,
R.K.
Liew
,
X.Y.
Lim
,
F.N.
Ani
, and
A.
Jusoh
, “
Fruit waste as feedstock for recovery by pyrolysis technique
,”
Int. Biodeterior. Biodegradation
113
,
325
333
(
2016
).
115.
I.A.W.
Tan
,
N.M.
Shafee
,
M.O.
Abdullah
, and
L.L.P.
Lim
, “
Synthesis and characterization of biocoal from Cymbopogon citrates residue using microwave-induced torrefaction
,”
Environ. Technol. Innov.
8
,
431
440
(
2017
).
116.
S.-H.
Ho
,
C.
Zhang
,
W.-H.
Chen
,
Y.
Shen
, and
J.-S.
Chang
, “
Characterization of biomass waste torrefaction under conventional and microwave heating
,”
Bioresour. Technol.
264
,
7
16
(
2018
).
117.
M.J.
Gronnow
,
V.L.
Budarin
,
O.
Mašek
,
K.N.
Crombie
,
P.A.
Brownsort
,
P.S.
Shuttleworth
,
P.R.
Hurst
, and
J.H.
Clark
, “
Torrefaction/biochar production by microwave and conventional slow pyrolysis–comparison of energy properties
,”
Gcb Bioenergy
5
(
2
),
144
152
(
2013
).
118.
Q.
Dong
, and
Y.
Xiong
, “
Kinetics study on conventional and microwave pyrolysis of moso bamboo
,”
Bioresour. Technol.
171
,
127
131
(
2014
).
119.
B.-J.
Lin
,
E.A.
Silveira
,
B.
Colin
,
W.-H.
Chen
,
Y.-Y.
Lin
,
F.
Leconte
,
A.
Pétrissans
,
P.
Rousset
, and
M.
Pétrissans
, “
Modeling and prediction of devolatilization and elemental composition of wood during mild pyrolysis in a pilot-scale reactor
,”
Ind. Crops Prod.
131
,
357
370
(
2019
).
120.
S.
Mutsengerere
,
C.H.
Chihobo
,
D.
Musademba
, and
I.
Nhapi
, “
A review of operating parameters affecting bio-oil yield in microwave pyrolysis of lignocellulosic biomass
,”
Renew. Sustain. Energy Rev.
104
,
328
336
(
2019
).
121.
Y.
Wang
,
A.
Akbarzadeh
,
L.
Chong
,
J.
Du
,
N.
Tahir
, and
M.K.
Awasthi
, “
Catalytic pyrolysis of lignocellulosic biomass for bio-oil production: A review
,”
Chemosphere
297
,
134181
(
2022
).
122.
P.N.Y.
Yek
,
R.K.
Liew
,
M.S.
Osman
,
C.L.
Lee
,
J.H.
Chuah
,
Y.-K.
Park
, and
S.S.
Lam
, “
Microwave steam activation, an innovative pyrolysis approach to convert waste palm shell into highly microporous activated carbon
,”
J. Environ. Manage.
236
,
245
253
(
2019
).
123.
M. Arafat
Hossain
,
P.
Ganesan
,
J.
Jewaratnam
, and
K.
Chinna
, “
Optimization of process parameters for microwave pyrolysis of oil palm fiber (OPF) for hydrogen and biochar production
,”
Energy Convers. Manag.
133
,
349
362
(
2017
).
124.
X.
Li
,
X.
Qiao
,
Y.
Shi
,
L.
Liu
,
T.
Wang
,
X.
Zhao
, and
B.
Liang
, “
Study on the optical properties of ReS 2 flakes by unpolarized and polarized optical contrast measurements
,”
Opt. Mater. Express
8
(
5
),
1107
1116
(
2018
).
125.
W.-H.
Chen
,
B.-J.
Lin
,
Y.-Y.
Lin
,
Y.-S.
Chu
,
A.T.
Ubando
,
P.L.
Show
,
H.C.
Ong
,
J.-S.
Chang
,
S.-H.
Ho
,
A.B.
Culaba
,
A.
Pétrissans
, and
M.
Pétrissans
, “
Progress in biomass torrefaction: Principles, applications and challenges
,”
Prog. Energy Combust. Sci.
82
,
100887
(
2021
).
126.
P.W.R.
Adams
,
J.E.J.
Shirley
, and
M.C.
McManus
, “
Comparative cradle-to-gate life cycle assessment of wood pellet production with torrefaction
,”
Appl. Energy
138
,
367
380
(
2015
).
127.
N.-Y.
Zheng
,
M.
Lee
, and
Y.-L.
Lin
, “
Co-processing textile sludge and lignocellulose biowaste for biofuel production through microwave-assisted wet torrefaction
,”
J. Clean. Prod.
268
,
122200
(
2020
).
128.
Y.-L.
Lin
, and
N.-Y.
Zheng
, “
Biowaste-to-biochar through microwave-assisted wet co-torrefaction of blending mango seed and passion shell with optoelectronic sludge
,”
Energy
225
,
120213
(
2021
).
129.
E.
Sermyagina
,
J.
Saari
,
J.
Kaikko
, and
E.
Vakkilainen
, “
Integration of torrefaction and CHP plant: Operational and economic analysis
,”
Appl. Energy
183
,
88
99
(
2016
).
130.
F.
Starfelt
,
E. Tomas
Aparicio
,
H.
Li
, and
E.
Dotzauer
, “
Integration of torrefaction in CHP plants – A case study
,”
Energy Convers. Manag.
90
,
427
435
(
2015
).
131.
M.A. Heredia
Salgado
,
J.A.
Coba
S, and
L.A.C.
Tarelho
, “
Simultaneous production of biochar and thermal energy using palm oil residual biomass as feedstock in an auto-thermal prototype reactor
,”
J. Clean. Prod.
266
,
121804
(
2020
).
132.
Y.-D.
Chen
,
F.
Liu
,
N.-Q.
Ren
, and
S.-H.
Ho
, “
Revolutions in algal biochar for different applications: State-of-the-art techniques and future scenarios
,”
Chinese Chem. Lett.
31
(
10
),
2591
2602
(
2020
).
133.
P.
Nanou
,
M.C.
Carbo
, and
J.H.A.
Kiel
, “
Detailed mapping of the mass and energy balance of a continuous biomass torrefaction plant
,”
Biomass and Bioenergy
89
,
67
77
(
2016
).
134.
Y.
Haseli
, “
Simplified model of torrefaction-grinding process integrated with a power plant
,”
Fuel Process. Technol.
188
,
118
128
(
2019
).
135.
N.
Kaliyan
,
R.V.
Morey
,
D.G.
Tiffany
, and
W.F.
Lee
, “
Life cycle assessment of a corn stover torrefaction plant integrated with a corn ethanol plant and a coal fired power plant
,”
Biomass and Bioenergy
63
,
92
100
(
2014
).
136.
S.
Knapp
,
A.
Güldemund
,
S.
Weyand
, and
L.
Schebek
, “
Evaluation of co-firing as a cost-effective short-term sustainable CO 2 mitigation strategy in Germany
,”
Energy. Sustain. Soc.
9
(
1
),
1
19
(
2019
).
137.
M.R.
Barati
,
M.
Aghbashlo
,
H.
Ghanavati
,
M.
Tabatabaei
,
M.
Sharifi
,
G.
Javadirad
,
A.
Dadak
, and
M. Mojarab
Soufiyan
, “
Comprehensive exergy analysis of a gas engine-equipped anaerobic digestion plant producing electricity and biofertilizer from organic fraction of municipal solid waste
,”
Energy Convers. Manag.
151
,
753
763
(
2017
).
138.
M.
Dehhaghi
,
M.
Tabatabaei
,
M.
Aghbashlo
,
H. Kazemi Shariat
Panahi
, and
A.-S.
Nizami
, “
A state-of-the-art review on the application of nanomaterials for enhancing biogas production
,”
J. Environ. Manage.
251
,
109597
(
2019
).
139.
C.B.
Lu
,
J.Z.
Yao
,
W.G.
Lin
, and
W.L.
Song
, “
Study on biomass catalytic pyrolysis for production of bio-gasoline by on-line FTIR
,”
Chinese Chem. Lett.
18
(
4
),
445
448
(
2007
).
140.
R.
Saidur
,
E.A.
Abdelaziz
,
A.
Demirbas
,
M.S.
Hossain
, and
S.
Mekhilef
, “
A review on biomass as a fuel for boilers
,”
Renew. Sustain. Energy Rev.
15
(
5
),
2262
2289
(
2011
).
141.
L.
Kumar
,
A.A.
Koukoulas
,
S.
Mani
, and
J.
Satyavolu
, “
Integrating torrefaction in the wood pellet industry: A critical review
,”
Energy & Fuels
31
(
1
),
37
54
(
2017
).
142.
S.
Mekhilef
,
M.
Barimani
,
A.
Safari
, and
Z.
Salam
, “
Malaysia’s renewable energy policies and programs with green aspects
,”
Renew. Sustain. Energy Rev.
40
,
497
504
(
2014
).
143.
R.
Ali
,
I.
Daut
, and
S.
Taib
, “
A review on existing and future energy sources for electrical power generation in Malaysia
,”
Renew. Sustain. Energy Rev.
16
(
6
),
4047
4055
(
2012
).
144.
Erdiwansyah
,
R.
Mamat
,
M.S.M.
Sani
, and
K.
Sudhakar
, “
Renewable energy in Southeast Asia: Policies and recommendations
,”
Sci. Total Environ.
, (
2019
).
145.
Erdiwansyah
,
A.
Gani
,
N.
MH
,
R.
Mamat
, and
R.E.
Sarjono
, “
Policies and laws in the application of renewable energy Indonesia: A reviews
,”
AIMS Energy
10
(
1
),
23
44
(
2022
).
146.
E.
Erdiwansyah
,
M.
Mahidin
,
H.
Husin
,
K.
Khairil
,
M.
Zaki
, and
J.
Jalaluddin
, “
Investigation of availability, demand, targets, economic growth and development of RE 2017-2050: Case study in Indonesia
,” (
2020
).
147.
R.
Wei
,
L.
Zhang
,
D.
Cang
,
J.
Li
,
X.
Li
, and
C.C.
Xu
, “
Current status and potential of biomass utilization in ferrous metallurgical industry
,”
Renew. Sustain. Energy Rev.
68
,
511
524
(
2017
).
148.
W.-H.
Chen
,
S.-W.
Du
,
C.-H.
Tsai
, and
Z.-Y.
Wang
, “
Torrefied biomasses in a drop tube furnace to evaluate their utility in blast furnaces
,”
Bioresour. Technol.
111
,
433
438
(
2012
).
This content is only available via PDF.
You do not currently have access to this content.