Microcrystalline Cellulose (MCC) is one of the materials that can be synthesized by utilizing the abundance of lignocellulosic biomass in nature. MCC can be obtained from wood and non-wood biomass. This study aims to produce MCC from wood (sengon wood) and non-wood (water hyacinth) biomass sources and study their characteristics. MCC is obtained through dewaxing, alkalization, bleaching, and hydrolysis processes. The dewaxing step was carried out using toluene:ethanol (2:1), then WH and SW were alkalized using 5% NaOH, bleached using 5% NaOH and 3% H2O2, and then hydrolyzed using 5% HCl. FTIR spectra of both biomass MCCs confirm the presence of cellulose with specific absorption at 3400-3504, 2902-2922, 1627-1639, and 1055-1060 cm−1. X-ray diffractogram of both MCCs show typical peaks of MCC at 2θ = 5-16, 22.5, and 34°. The results of the XRD analysis showed that the crystallinity index (CrI) of MCC isolated from water hyacinth was higher than sengon wood with CrI values of 80.49 and 79.67% respectively. The high crystallinity of MCC from water hyacinth makes its thermal stability better than sengon wood. The results of the SEM analysis showed that the MCC from water hyacinth had an irregular shape, while the MCC from sengon wood had cylindrical and rod shapes.

1.
A.
Sharma
,
M.
Thakur
,
M.
Bhattacharya
,
T.
Mandal
, and
S.
Goswami
, “Commercial application of cellulosenano-composites–A review,”
Biotechnol. Reports
, vol.
21
, p.
e00316
,
2019
.
2.
H.
Chen
, “
Chemical composition and structure of natural lignocellulose
,” in
Biotechnology of lignocellulose,Springer
,
2014
, pp.
25
71
.
3.
A. M.
Mansora
,
J. S.
Lima
,
F. N.
Anib
,
H.
Hashima
, and
W. S.
Hoa
, “
Characteristics of cellulose, hemicelluloseand lignin of MD2 pineapple biomass
,”
Chem. Eng
, vol.
72
, no.
1
, pp.
79
84
,
2019
.
4.
W.
Fatriasari
,
N.
Masruchin
, and
E.
Hermiati
,
Selulosa: Karakteristik dan Pemanfaatannya
.
LIPI Press
,
2019
.
5.
P.
González-García
, “
Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications
,”
Renew. Sustain. Energy Rev.
, vol.
82
, pp.
1393
1414
,
2018
.
6.
D.
Klemm
,
B.
Heublein
,
H.
Fink
, and
A.
Bohn
, “
Cellulose: fascinating biopolymer and sustainable raw material
,”
Angew. chemie Int. Ed.
, vol.
44
, no.
22
, pp.
3358
3393
,
2005
.
7.
X.
Fan
,
Z.
Liu
,
Z.
Liu
, and
J.
Lu
, “
Cellulose acetate membrane synthesis from biomass of ramie
,”
J. Appl. Polym. Sci.
, vol.
117
, no.
1
, pp.
588
595
,
2010
.
8.
M. S.
Hasanin
,
N.
Kassem
, and
M. L.
Hassan
, “
Preparation and characterization of microcrystalline cellulose from olive stones
,”
Biomass Convers. Biorefinery
, pp.
1
8
,
2021
.
9.
T.
Semachai
,
P.
Chandranupap
, and
P.
Chandranupap
, “
Preparation of Microcrystalline Cellulose from Water Hyacinth Reinforced Polylactic Acid Biocomposite
,” in
MATEC Web of Conferences
,
2018
, vol.
187
, p.
2003
.
10.
P. N.
Trisant
,
I.
Gunardi
, and
Sumarno
, “
The Influence of Hydrolysis Time in Hydrothermal Process of Cellulose from Sengon Wood Sawdust
,”
Macromol. Symp.
, vol.
391
, no.
1
, pp.
1
5
,
2020
, doi: .
11.
H. K.
Singh
,
T.
Patil
,
S. K.
Vineeth
,
S.
Das
,
A.
Pramanik
, and
S. T.
Mhaske
, “Isolation of microcrystalline cellulose from corn stover with emphasis on its constituents: corn cover and corn cob,”
Mater. Today Proc.
, vol.
27
, pp.
589
594
,
2020
.
12.
R.
Katakojwala
and
S. V.
Mohan
, “Microcrystalline cellulose production from sugarcane bagasse: Sustainable process development and life cycle assessment,”
J. Clean. Prod.
, vol.
249
, p.
119342
,
2020
.
13.
Z.
Ahmad
,
N. N.
Roziaizan
,
R.
Rahman
,
A. F.
Mohamad
, and
W. I. N. W.
Ismail
, “Isolation and characterization of microcrystalline cellulose (MCC) from rice husk (RH),” in
MATEC Web of Conferences
,
2016
, vol.
47
, p.
5013
.
14.
T. W.
Yuen
et al, “
Microcrystalline Cellulose Generation from Laboratory Cotton Waste and Conventional Characterizations
,”
2021
.
15.
F.
Yudhanto
, “
The Effect of Alkali Treatment and Addition of Microcrystalline Cellulose (MCC) on Physical and Tensile Properties of Ramie/Polyester Laminated Composites
.,”
Rev. des Compos. des Matériaux Avancés
, vol.
32
, no.
2
,
2022
.
16.
M.
Alle
,
R.
Bandi
,
S.-H.
Lee
, and
J.-C.
Kim
,
Recent trends in isolation of cellulose nanocrystals and nanofibrils from various forest wood and nonwood products and their application
.
INC
,
2020
. doi: .
17.
S.
Tanpichai
,
S. K.
Biswas
,
S.
Witayakran
, and
H.
Yano
, “
Water Hyacinth: A Sustainable Lignin-Poor Cellulose Source for the Production of Cellulose Nanofibers
,”
ACS Sustain. Chem. Eng.
, vol.
7
, no.
23
, pp.
18884
18893
,
2019
, doi: .
18.
P. N.
Trisanti
,
M.
Rifan
,
P. A.
Arafat
,
I.
Gunardi
, and
S.
Sumarno
, “
The effect of alkaline concentration in the alkaline delignification-assisted sonication on sengon wood
,” in
AIP Conference Proceedings
,
2021
, vol.
2349
,no.
1
, p.
20049
.
19.
H.
Holilah
et al, “
Hydrothermal assisted isolation of microcrystalline cellulose from pepper (Piper nigrum L.) processing waste for making sustainable bio-composite
,”
J. Clean. Prod.
, vol.
305
, p.
127229
,
2021
.
20.
T.
Istirokhatun
,
N.
Rokhati
,
R.
Rachmawaty
,
M.
Meriyani
,
S.
Priyanto
, and
H.
Susanto
, “
Cellulose isolation from tropical water hyacinth for membrane preparation
,”
Procedia Environ. Sci.
, vol.
23
, pp.
274
281
,
2015
.
21.
A.
Arivendan
,
W. J. Jebas
Thangiah
,
S.
Irulappasamy
, and
B. N.
Chrish
, “
Study on characterization of water hyacinth (Eichhornia crassipes) novel natural fiber as reinforcement with epoxy polymer matrix material for lightweight applications
,”
J. Ind. Text.
, p.
15280837211067280
,
2022
.
22.
H.
Lu
,
L.
Zhang
,
M.
Yan
,
K.
Wang
, and
J.
Jiang
, “
Screw extrusion pretreatment for high-yield lignocellulose nanofibrils (LCNF) production from wood biomass and non-wood biomass
,”
Carbohydr. Polym.
, vol.
277
, no. June 2021, p.
118897
,
2022
, doi: .
23.
M. H.
Sainorudin
,
M.
Mohammad
,
N. H. A.
Kadir
,
N. A.
Abdullah
, and
Z.
Yaakob
, “
Characterization of several microcrystalline cellulose (Mcc)-based agricultural wastes via x-ray diffraction method
,” in
Solid state phenomena
,
2018
, vol.
280
, pp.
340
345
.
24.
A.
Khenblouche
et al, “
Extraction and characterization of cellulose microfibers from Retama raetam stems
,”
Polímeros
, vol.
29
,
2019
.
25.
A. F.
Owolabi
,
M. K. M.
Haafiz
,
M. S.
Hossain
,
M. H.
Hussin
, and
M. R. N.
Fazita
, “
Influence of alkaline hydrogen peroxide pre-hydrolysis on the isolation of microcrystalline cellulose from oil palm fronds
,”
Int. J. Biol. Macromol.
, vol.
95
, pp.
1228
1234
,
2017
.
26.
M.
Poletto
,
A. J.
Zattera
,
M. M. C.
Forte
, and
R. M. C.
Santana
, “
Thermal decomposition of wood: Influence ofwood components and cellulose crystallite size
,”
Bioresour. Technol.
, vol.
109
, pp.
148
153
,
2012
.
27.
R.
Yulina
,
R. S.
Gustiani
,
C.
Kasipah
, and
M. D.
Sukardan
, “
Preparation of microcrystalline cellulose from cotton yarn spinning mills wastes: effect of pretreatment and hydrolysis reaction condition on the product characteristics
,” in
E3S Web of Conferences
,
2020
, vol.
148
, p.
2004
.
28.
P.
Kumari
,
G.
Pathak
,
R.
Gupta
,
D.
Sharma
, and
A.
Meena
, “
Cellulose nanofibers from lignocellulosic biomass of lemongrass using enzymatic hydrolysis: characterization and cytotoxicity assessment
.,”
DARU J. Pharm. Sci.
, vol.
27
, no.
2
, pp.
683
693
,
2019
.
29.
K.
Bhandari
,
S. Roy
Maulik
, and
A. R.
Bhattacharyya
, “
Synthesis and Characterization of Microcrystalline Cellulose from Rice Husk
,”
J. Inst. Eng. Ser. E
, vol.
101
, no.
2
, pp.
99
108
,
2020
, doi: .
This content is only available via PDF.
You do not currently have access to this content.