With increasing need for green energy sources and rising popularity of small horizontal axis wind turbines in micro electric installations for household and industrial purposes, the safety measures are gaining supreme interest. Small wind turbine built within the frames of GUST (Generative Urban Small Turbine) project developed by Lodz University of Technology, is an example of such multi-level, security-oriented design. The machine is equipped with fully functional modules and software working on constant supervision of electric and electronic components of the wind turbine. In case of any possible failure mark detected, automated braking system is triggered to stop the rotor. Taking the safety system one step further, there is also a need for monitoring of mechanical aspects of rotor operation, such as blade deflection. To check this aspect, on a surface of the blade based on SG6043 aerofoil we have installed a strain gauge system. Then, a dedicated electronic circuit was developed for data acquisition and storage. Together, they create a fully functional system of blade deflection measurement. The purpose of this article is to introduce our idea to the reader, present the preliminary results followed by signal analysis and show the prospects for improvements in the future.

1.
IEA
(
2022
), Renewable Energy Market Update - May 2022,
IEA
,
Paris
https://www.iea.org/reports/renewable-energy-market-update-may-2022
3.
WWEA
,
2017 Small Wind World Report Summary
, http://www.wwindea.org/download/SWWR2017-SUMMARY(2).pdf
4.
Y.-H.
Liao
,
L.-C.
Yang
,
Y.-C.
Chuang
, “
Development and analysis of a single-stage converter for small-scale wind power system
”,
2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE)
, pp.
449
453
(
2014
).
5.
J. C. Y.
Hui
,
A.
Bakhshai
, and
P. K.
Jain
, “
A sensorless adaptive maximum power point extraction method with voltage feedback control for small wind turbines in off-grid applications
”,
IEEE J. Emerg. Sel. Top. Power Electron.
3
(
3
), pp.
817
828
(
2015
).
6.
M.
Stępień
et al, “
GUST horizontal-axis wind turbine - case study
”, in
8th Annual International Conference on Sustainable Energy and Environmental Science – SEES 2019
, (28–29 January,
Singapore
).
7.
P. J.
Tavner
et al, “
Study of weather and location effects on wind turbine
”,
Wind Energy
16
, pp.
175
187
(
2013
).
8.
S. H.
Danook
,
K. J.
Jassim
and
A. M.
Hussein
, “
The impact of humidity on performance of wind turbine, Case Studies
”,
Thermal Engineering
14
,
100456
(
2019
).
9.
C.
Hasager
,
F.
Vejen
,
J. I.
Bech
,
W. R.
Skrzypiński
,
A.-M.
Tilg
,
M.
Nielsen
, “
Assessment of the rain and wind climate with focus on wind turbine blade leading edge erosion rate and expected lifetime in Danish Seas
”,
Renewable Energy
149
, pp.
91
102
(
2020
).
10.
B.
Lu
,
Y.
Li
,
X.
Wu
,
Z.
Yang
, “
A review of recent advances in wind turbine condition monitoring and fault diagnosis
”,
2009 IEEE Power Electronics and Machines in Wind Applications
, pp.
1
7
(
2009
).
11.
P.
Rogowski
,
M.
Prociow
,
M.
Miller
,
M.
Kulak
,
M.
Lipian
,
F.
Grapow
, “
Design and implementation of low-cost safety system for small wind turbine
”,
2020 6th IEEE International Energy Conference (ENERGYCon)
, pp.
244
247
(
2020
).
12.
D.
Kądrowski
et al, “
Challenging low Reynolds – SWT blade aerodynamics
”,
MATEC Web Conf.
234
,
01004
(
2018
).
13.
K.
Zawadzki
,
M.
Kulak
,
M.
Lipian
,
M.
Stepien
,
D.
Kadrowski
, “
Assessment of blade strength for small wind turbine applications
”,
E3S Web Conf.
160
,
01007
(
2020
).
14.
M. A.
Rumsey
,
J. A.
Paquette
, “
Structural health monitoring of wind turbine blades
”, in
Smart Sensor Phenomena, Technology, Networks, and Systems 2008
,
Proc. SPIE
6933
,
69330E
(
2008
).
15.
A.
Ghoshal
,
M. J.
Sundaresan
,
M. J.
Schulz
,
P. Frank
Pai
, “
Structural health monitoring techniques for wind turbine blades
”,
Journal of Wind Engineering and Industrial Aerodynamics
85
(
3
), pp.
309
324
(
2000
).
16.
J. R.
Lee
,
H. C.
Kim
, “
Feasibility of in situ blade deflection monitoring of a wind turbine using a laser displacement sensor within the tower
”,
Smart Mater. Struct.
22
,
027002
(
2013
).
17.
P.
Giri
,
J.-R.
Lee
, “
Development of wireless laser blade deflection monitoring system for mobile wind turbine management host
”,
Journal of Intelligent Material Systems and Structures
25
, pp.
1384
1397
(
2014
).
18.
K.
Schroeder
,
W.
Ecke
,
J.
Apitz
,
E.
Lembke
,
G.
Lenschow
, “
A Fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade
”,
Meas. Sci. Technol.
17
, pp.
1167
1172
(
2006
).
19.
S.-W.
Kim
et al, “
Deflection estimation of a wind turbine blade using FBG sensors embedded in the blade bonding line
”,
Smart Mater. Struct.
22
,
125004
(
2013
).
20.
S.
Park
,
T.
Park
,
K.
Han
, “
Real-time monitoring of composite wind turbine blades using Fiber Bragg grating sensors
”,
Advanced Composite Materials
20
(
1
), pp.
39
51
(
2011
).
21.
K.
Krebber
,
W.
Habel
,
T.
Gutmann
,
C.
Schram
, “
Fiber Bragg grating sensors for monitoring of wind turbine blades
”, in
Proceedings of 17th International Conference on Optical Fibre Sensors
5855
, (
Bruges
,
Belgium
,
2005
).
22.
S.-W.
Kim
et al, “
Deflection estimation of a wind turbine blade using FBG sensors embedded in the blade bonding line
”,
Smart Mater. Struct.
22
,
125004
(
2013
).
23.
S.
Zhang
et al, “
UWB wind turbine blade deflection sensing for wind energy cost reduction
”,
Sensors
15
,
19768
19782
(
2015
).
24.
S.
Zhang
,
O.
Franek
,
C.
Byskov
,
G. F.
Pedersen
, “
Antenna gain impact on UWB wind turbine blade deflection sensing
”,
IEEE Access
6
, pp.
20497
20505
(
2018
).
25.
V. M. N.
Passaro
,
A.
Cuccovillo
,
L.
Vaiani
,
M.
Carlo
,
C. E.
Campanella
, “
Gyroscope technology and applications: A review in the industrial perspective
”,
Sensors
17
(
10
),
2284
(
2017
).
26.
X.
Fu
,
L.
He
,
H.
Qiu
, “
MEMS gyroscope sensors for wind turbine blade tip deflection measurement
”,
2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
, pp.
1708
1712
(
2013
).
27.
M.
Ozbek
,
D.J.
Rixen
,
O.
Erne
,
G.
Sanow
, “
Feasibility of monitoring large wind turbines using photogrammetry
”,
Energy
35
(
12
), pp.
4802
4811
(
2010
).
28.
K.
Papadopoulos
,
E.
Morifiadakis
,
T. P.
Philippidis
,
D. J.
Lekou
, “
Assessment of the strain gauge technique for measurement of wind turbine blade loads
”,
Wind Energy
3
, pp.
35
65
(
2000
).
29.
K.
Zawadzki
et al, “
Fatigue testing of the small wind turbine blade
”,
International Journal of Mechanical Engineering and Robotics Research
11
(
4
), pp.
269
274
(
2022
).
30.
C. C.
Perry
, “
Strain gauge measurements on plastics and composites
”,
Strain
23
(
4
), pp.
155
156
, (
1987
).
31.
M.
Katouzian
,
S.
Vlase
, “
Creep response of carbon-fiber-reinforced composite using homogenization method
”,
Polymers
13
(
6
).
This content is only available via PDF.
You do not currently have access to this content.