Photovoltaic (PV) generators convert solar energy into electrical energy using the photoelectric effect. However, only a portion of the incident energy is converted into electrical energy, with up to 24 % conversion efficiency on the commercial panels. A significant portion of the incident energy is converted into heat on the PV panel, causing the cell temperature to rise above the ambient temperature by up to 30 ◦C. During normal operation, the operating point on the current-voltage (IU ) curve lies at the maximum power point (MPP). However, the PV module can operate at points outside the MPP, including two extreme points: the short circuit and the open circuit. Of particular interest is the open circuit regime, in which the PV panel can stay on for an extended period of time. In this study, we analyzed the problem of increasing PV cell temperature in three characteristic points: MPP, short circuit and open circuit. We used a single-diode model of the PV cell to analyze power losses in individual components for all operating points on the IU curve. Based on this analysis, we estimated the sources of PV panel heating. Measurements were performed on three panels of the same model under the same ambient conditions, with each panel at a different operating point. Our results showed that the cell temperature at the MPP ranged from 24 to 27.8 C above the ambient temperature. At the short circuit point the range was 28.8 to 34.4 C and at the open circuit point, it was 30.6 to 35.1 C.

1.
J.-W.
Arnulf
,
K.
Ioannis
,
T.
Nigel
, and
T.
Christian
, “
How photovoltaics can contribute to GHG emission reductions of 55% in the EU by 2030
,”
RENEWABLE & SUSTAINABLE ENERGY REVIEWS
126
,
109836
(
2020
).
2.
A clean planet for all a european strategic long-term vision for a prosperous, modern, competitive and climate neutral economy
,” Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52018DC0773 (
2018
).
3.
IRENA and ILO
,
Renewable energy and jobs: Annual review 2022
(
International Renewable Energy Agency, Abu Dhabi and International Labour Organization
,
Geneva
,
2022
).
4.
G. N.
Tiwari
,
A.
Tiwari
, and
Shyam
,
Handbook of Solar Energy
(
Springer Singapore
,
2016
).
5.
“Utility-scale solar photovoltaic power plants in partnership with a project developer’s guide,”
Tech. Rep
. (
International Finance Corporation
,
2121 Pennsylvania Avenue, N.W. Washington, D.C. 20433
,
2015
).
6.
IRENA and ILO
,
Renewable Power Generation Costs in 2021
(
International Renewable Energy Agency, Abu Dhabi and International Labour Organization
,
Geneva
,
2022
).
7.
E.
Vartiainen
,
G.
Masson
,
C.
Breyer
,
D.
Moser
, and
E. R.
Medina
, “
Impact of weighted average cost of capital, capital expenditure, and other parameters on future utility-scale PV levelised cost of electricity
,”
Progress in Photovoltaics: Research and Applications
28
,
439
453
(
2019
).
8.
Photovoltaics report
,”
Tech. Rep.
(Fraunhofer Institute for Solar Energy Systems, ISE with support of PSE Projects GmbH, Fraunhofer ISE, Heidenhofstr. 2, 79110 Freiburg, Germany,
2023
).
9.
A.
Santic
and
A.
Aksamovic
, “
Photovoltaic plants in bosnia and herzegovina — state and perspectives
,” in
2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)
(
IEEE
,
2018
).
10.
M. R.
Ramali
,
N. A. F. M. N.
Ong
,
M. S. M.
Said
,
H. M.
Yusoff
,
M. R.
Baharudin
,
A. F.
Tharima
,
F. W.
Akashah
, and
M. Z. M.
Tohir
, “
A review on safety practices for firefighters during photovoltaic (PV) fire
,”
Fire Technology
59
,
247
270
(
2022
).
11.
M. C.
Falvo
and
S.
Capparella
, “
Safety issues in PV systems: Design choices for a secure fault detection and for preventing fire risk
,”
Case Studies in Fire Safety
3
,
1
16
(
2015
).
12.
L.
Fiorentini
,
L.
Marmo
,
E.
Danzi
, and
V.
Puccia
, “
Fire risk assessment of photovoltaic plants. a case study moving from two large fires: from accident investigation and forensic engineering to fire risk assessment for reconstruction and permitting purposes
,”
Chemical Engineering Transactions
48
,
427
432
(
2016
).
13.
N. A. F. M. N.
Ong
,
M. Z. M.
Tohir
,
M. S. M.
Said
,
M. S.
Nasif
,
A. H.
Alias
, and
M. R.
Ramali
, “
Development of fire safety best practices for rooftops grid-connected photovoltaic (PV) systems installation using systematic review methodology
,”
Sustainable Cities and Society
78
,
103637
(
2022
).
14.
N. A. F. M. N.
Ong
,
M. A.
Sadiq
,
M. S. M.
Said
,
G.
Jomaas
,
M. Z. M.
Tohir
, and
J. S.
Kristensen
, “
Fault tree analysis of fires on rooftops with photovoltaic systems
,”
Journal of Building Engineering
46
,
103752
(
2022
).
15.
N. A. F. M. N.
Ong
,
M. Z. M.
Tohir
,
M. M.
Mutlak
,
M. A.
Sadiq
,
R.
Omar
, and
M. S. M.
Said
, “
BowTie analysis of rooftop grid-connected photovoltaic systems
,”
Process Safety Progress
41
(
2022
), .
16.
Z.
Wu
,
Y.
Hu
,
J. X.
Wen
,
F.
Zhou
, and
X.
Ye
, “
A review for solar panel fire accident prevention in large-scale PV applications
,”
IEEE Access
8
,
132466
132480
(
2020
).
17.
J. P.
Silva
,
G.
Nofuentes
, and
J. V.
Muñoz
, “
Spectral reflectance patterns of photovoltaic modules and their thermal effects
,”
Journal of Solar Energy Engineering
132
(
2010
), .
18.
R. Ross
Jr
and
M.
Smokler
, “Flat-plate solar array project: Final report: Volume 6, Engineering sciences and reliability,”
Tech. Rep
. (
Jet Propulsion Lab
.,
Pasadena, CA (USA
),
1986
).
19.
A.
Jones
and
C.
Underwood
, “
A thermal model for photovoltaic systems
,”
Solar Energy
70
,
349
359
(
2001
).
20.
R.
Hassanian
,
M.
Riedel
,
A.
Helgadottir
,
N.
Yeganeh
, and
R.
Unnthorsson
, “
Implicit equation for photovoltaic module temperature and efficiency via heat transfer computational model
,”
Thermo
2
,
39
55
(
2022
).
21.
P.
Rajput
,
G.
Tiwari
, and
O.
Sastry
, “
Thermal modelling and experimental validation of hot spot in crystalline silicon photovoltaic modules for real outdoor condition
,”
Solar Energy
139
,
569
580
(
2016
).
22.
S.
Armstrong
and
W.
Hurley
, “
A thermal model for photovoltaic panels under varying atmospheric conditions
,”
Applied Thermal Engineering
30
,
1488
1495
(
2010
).
23.
G.
Tina
and
S.
Scrofani
, “
Electrical and thermal model for PV module temperature evaluation
,” in
MELECON 2008 - The 14th IEEE Mediter-ranean Electrotechnical Conference
(
IEEE
,
2008
).
24.
A.
Akšamović
,
S.
Konjicija
,
S.
Odžak
,
S.
Pašalić
, and
S.
Grebović
, “
DC cabling of large-scale photovoltaic power plants
,”
Applied Sciences
12
,
4500
(
2022
).
25.
M.
Abd-Elhady
,
Z.
Serag
, and
H.
Kandil
, “
An innovative solution to the overheating problem of PV panels
,”
Energy Conversion and Manage-ment
157
,
452
459
(
2018
).
26.
R. J.
Mustafa
,
M. R.
Gomaa
,
M.
Al-Dhaifallah
, and
H.
Rezk
, “
Environmental impacts on the performance of solar photovoltaic systems
,”
Sustainability
12
,
608
(
2020
).
27.
A.
Pandian
,
K.
Bansal
,
D. J.
Thiruvadigal
, and
S.
Sakthivel
, “
Fire hazards and overheating caused by shading faults on photo voltaic solar panel
,”
Fire Technology
52
,
349
364
(
2015
).
28.
S.
Wendlandt
,
A.
Drobisch
,
T.
Buseth
,
S.
Krauter
, and
P.
Grunow
, “
Hot spot risk analysis on silicon cell modules
,” in
25th European Photo-voltaic Solar Energy Conference and Exhibition
(
Valencia, Spain
,
2010
) pp.
4002
4006
.
29.
O.
Dupré
,
R.
Vaillon
, and
M. A.
Green
, “
A full thermal model for photovoltaic devices
,”
Solar Energy
140
,
73
82
(
2016
).
30.
O.
Dupré
,
R.
Vaillon
, and
M. A.
Green
,
Thermal Behavior of Photovoltaic Devices
(
Springer International Publishing
,
2017
).
31.
A.
Gholami
,
M.
Ameri
,
M.
Zandi
, and
R. G.
Ghoachani
, “
Electrical, thermal and optical modeling of photovoltaic systems: Step-by-step guide and comparative review study
,”
Sustainable Energy Technologies and Assessments
49
,
101711
(
2022
).
32.
N.
Yıldıran
and
E.
Tacer
, “
Identification of photovoltaic cell single diode discrete model parameters based on datasheet values
,”
Solar Energy
127
,
175
183
(
2016
).
33.
F. F.
Muhammad
,
M. Y.
Yahya
,
S. S.
Hameed
,
F.
Aziz
,
K.
Sulaiman
,
M. A.
Rasheed
, and
Z.
Ahmad
, “
Employment of single-diode model to elucidate the variations in photovoltaic parameters under different electrical and thermal conditions
,”
PLOS ONE
12
,
e0182925
(
2017
).
34.
A.
Orioli
and
A. D.
Gangi
, “
A criterion for rating the usability and accuracy of the one-diode models for photovoltaic modules
,”
Energies
9
,
427
(
2016
).
35.
R. A. M.
Lameirinhas
,
J. P. N.
Torres
, and
J. P. de Melo
Cunha
, “
A photovoltaic technology review: History, fundamentals and applications
,”
Energies
15
,
1823
(
2022
).
36.
M.
Villalva
,
J.
Gazoli
, and
E.
Filho
, “
Comprehensive approach to modeling and simulation of photovoltaic arrays
,”
IEEE Transactions on Power Electronics
24
,
1198
1208
(
2009
).
37.
A.
Senturk
and
R.
Eke
, “
A new method to simulate photovoltaic performance of crystalline silicon photovoltaic modules based on datasheet values
,”
Renewable Energy
103
,
58
69
(
2017
).
38.
J.
Cubas
,
S.
Pindado
, and
C.
de Manuel
, “
Explicit expressions for solar panel equivalent circuit parameters based on analytical formulation and the lambert w-function
,”
Energies
7
,
4098
4115
(
2014
).
39.
S.
Pindado
and
J.
Cubas
, “
Simple mathematical approach to solar cell/panel behavior based on datasheet information
,”
Renewable Energy
103
,
729
738
(
2017
).
40.
W.
Gong
and
Z.
Cai
, “
Parameter extraction of solar cell models using repaired adaptive differential evolution
,”
Solar Energy
94
,
209
220
(
2013
).
41.
LG Precision Co., Ltd
.,
Adjustment and Test procedure Manual for digital multimeter Model: DM-311
(
1999
).
42.
UNI-T
,
UT89X Portable Digital Multimeter Manual
(
2019
).
43.
I.
Terasaki
, “Thermal conductivity and thermoelectric power of semiconductors,” in
Reference Module in Materials Science and Materials Engineering
(
Elsevier
,
2016
).
44.
Astronergy
, “
Crystalline PV module CHSM6610P
,”
Product datasheet
(
2011
).
45.
FLIR Systems
, “
FLIR E8-XT WiFi infrared camera with extended temperature range
,” https://www.flir.eu/products/e8-xt/ (
2016
), accessed: March 31, 2023.
This content is only available via PDF.
You do not currently have access to this content.