Auditory and vestibular systems display mechanical coupling of active, oscillating components. The strength and extent of this coupling varies across species and organs, depending on the specific task of each system. It is believed that this mechanical coupling is essential to achieve sufficient s ensitivity, frequency s electivity, and temporal resolution for reliable s ignal detection. These characteristics depend heavily on the ability of the active oscillators to synchronize with each other. It has previously been shown that spontaneous otoacoustic emissions may arise through a dynamical systems phenomenon known as frequency clustering, where active oscillators synchronize with those of similar characteristic frequency, forming several distinct clusters. In this work, we demonstrate that nonisochronous oscillators (those with amplitude-dependent characteristic frequencies) enhance the stability of these clusters, yielding larger, sharper spectral peaks. Further, we show that nonisochronicity enhances the ability of the system to detect weak signals. We propose that auditory and vestibular systems utilize nonisochronicity as a mechanism of facilitating synchronization among oscillating components to enhance signal detection.

1.
A. J.
Hudspeth
, “
Integrating the active process of hair cells with cochlear function
,”
Nat. Rev. Neurosci.
15
,
600
(
2014
), .
2.
M. F.
Spiegel
and
C. S.
Watson
, “
Performance on frequency-discrimination tasks by musicians and nonmusicians
,”
J. Acoust. Soc.
76
,
1690
(
1984
), .
3.
B.
Leshowitz
, “
Measurement of the two-click threshold
,”
J. Acoust. Soc.
49
,
462
(
1971
), .
4.
T.
Reichenbach
and
A. J.
Hudspeth
, “
The physics of hearing: fluid mechanics and the active process of the inner ear
,”
Rep. Prog. Phys.
77
,
076601
(
2014
), .
5.
M.
LeMasurier
and
P. G.
Gillespie
, “
Hair-cell mechanotransduction and cochlear amplification
,”
Neuron
48
,
403
(
2005
), .
6.
M. A.
Vollrath
,
K. Y.
Kwan
, and
D. P.
Corey
, “
The micromachinery of mechanotransduction in hair cells
,”
Annu. Rev. Neurosci.
30
,
339
(
2007
), .
7.
D. Ó
Maoiléidigh
and
A. J.
Ricci
, “
A bundle of mechanisms: Inner-ear hair-cell mechanotransduction
,”
Trends Neurosci.
42
,
221
(
2019
), .
8.
A. J.
Hudspeth
, “
Making an effort to listen: mechanical amplification in the ear
,”
Neuron
59
,
530
(
2008
), .
9.
M. E.
Benser
,
R. E.
Marquis
, and
A. J.
Hudspeth
, “
Rapid, active hair bundle movements in hair cells from the bullfrog’s sacculus
,”
J. Neurosci.
16
,
5629
(
1996
), .
10.
P.
Martin
,
D.
Bozovic
,
Y.
Choe
, and
A. J.
Hudspeth
, “
Spontaneous oscillation by hair bundles of the bullfrog’s sacculus
,”
J. Neurosci.
23
,
4533
(
2003
), .
11.
A. C.
Crawford
and
R.
Fettiplace
, “
The mechanical properties of ciliary bundles of turtle cochlear hair cells
,”
J. Physiol.
364
,
359
(
1985
), .
12.
P.
Martin
,
A. J.
Hudspeth
, and
F.
Jülicher
, “
Comparison of a hair bundle’s spontaneous oscillations with its response to mechanical stimulation reveals the underlying active process
,”
Proc. Natl. Acad. Sci. U.S.A.
98
,
14380
(
2001
), .
13.
P.
Martin
and
A. J.
Hudspeth
, “
Active hair-bundle movements can amplify a hair cell’s response to oscillatory mechanical stimuli
,”
Proc. Natl. Acad. Sci. U.S.A.
96
,
14306
(
1999
), .
14.
D. T.
Kemp
, “
Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea
,”
Arch. Oto-Rhino-Laryngol.
224
,
37
(
1979
), .
15.
C. A.
Shera
, “
Mechanisms of mammalian otoacoustic emission and their implications for the clinical utility of otoacoustic emissions
,”
Ear Hear.
25
,
86
(
2004
), .
16.
C.
Bergevin
,
G. A.
Manley
, and
C.
Köppl
, “
Salient features of otoacoustic emissions are common across tetrapod groups and suggest shared properties of generation mechanisms
,”
Proc. Natl. Acad. Sci. U.S.A.
112
,
3362
(
2015
), .
17.
Y.
Roongthumskul
,
D. Ó
Maoiléidigh
, and
A. J.
Hudspeth
, “
Bilateral spontaneous otoacoustic emissions show coupling between active oscil-lators in the two ears
,”
Biophys. J.
116
,
2023
(
2019
), .
18.
A.
Vilfan
and
T.
Duke
, “
Frequency clustering in spontaneous otoacoustic emissions from a lizard’s ear
,”
Biophys. J.
95
,
4622
(
2008
), .
19.
F.
Fruth
,
F.
Jülicher
, and
B.
Lindner
, “
An active oscillator model describes the statistics of spontaneous otoacoustic emissions
,”
Biophys. J.
107
,
815
(
2014
), .
20.
V. M.
Eguiluz
,
M.
Ospeck
,
Y.
Choe
,
A. J.
Hudspeth
, and
M. O.
Magnasco
, “
Essential nonlinearities in hearing
,”
Phys. Rev. Lett.
84
,
5232
(
2000
), .
21.
A.
Kern
and
R.
Stoop
, “
Essential role of couplings between hearing nonlinearities
,”
Phys. Rev. Lett.
91
,
128101
(
2003
), .
22.
S.
Camalet
,
T.
Duke
,
F.
Jülicher
, and
J.
Prost
, “
Auditory sensitivity provided by self-tuned critical oscillations of hair cells
,”
Proc. Natl. Acad. Sci. U.S.A.
97
,
3183
(
2000
), .
23.
A. R.
Milewski
,
D. Ó
Maoiléidigh
,
J. D.
Salvi
, and
A. J.
Hudspeth
, “
Homeostatic enhancement of sensory transduction
,”
Proc. Natl. Acad. Sci. U.S.A.
114
,
E6794
(
2017
), .
24.
J.
Faber
and
D.
Bozovic
, “
Chaotic dynamics enhance the sensitivity of inner ear hair cells
,”
Sci. Rep.
9
,
18394
(
2019
), .
25.
J.
Faber
and
D.
Bozovic
, “
Noise-induced chaos and signal detection by the nonisochronous hopf oscillator
,”
Chaos
29
,
043132
(
2019
), .
26.
J.
Faber
,
H.
Li
, and
D.
Bozovic
, “
Synchronization and chaos in systems of coupled inner-ear hair cells
,”
Phys. Rev. Res.
3
,
013266
(
2021
), .
27.
K.-J.
Kim
and
K.-H.
Ahn
, “
Amplitude death of coupled hair bundles with stochastic channel noise
,”
Phys. Rev. E
89
,
042703
(
2014
), .
28.
K.
Dierkes
,
F.
Jülicher
, and
B.
Lindner
, “
A mean-field approach to elastically coupled hair bundles
,”
Eur. Phys. J. E
35
,
37
(
2012
), .
29.
V. Z.
Marmarelis
, “
Coherence and apparent transfer function measurements for nonlinear physiological systems
,”
Ann. Biomed. Eng.
16
,
143
157
(
1988
), .
30.
A. B.
Neiman
,
K.
Dierkes
,
B.
Lindner
,
L.
Han
, and
A. L.
Shilnikov
, “
Spontaneous voltage oscillations and response dynamics of a hodgkin-huxley type model of sensory hair cells
,”
J. Math. Neurosci.
1
,
11
(
2011
), .
31.
S.
Ji
,
D.
Bozovic
, and
R.
Bruinsma
, “
Amphibian sacculus and the forced kuramoto model with intrinsic noise and frequency dispersion
,”
Phys. Rev. E
97
,
042411
(
2018
), .
32.
Y.
Roongthumskul
,
J.
Faber
, and
D.
Bozovic
, “
Dynamics of mechanically coupled hair-cell bundles of the inner ear
,”
Biophys. J.
120
,
205
(
2021
), .
33.
L.
Fredrickson-Hemsing
,
C. E.
Strimbu
,
Y.
Roongthumskul
, and
D.
Bozovic
, “
Dynamics of freely oscillating and coupled hair cell bundles under mechanical deflection
,”
Biophys. J.
102
,
1785
(
2012
), .
34.
J.
Faber
and
D.
Bozovic
, “
Chaotic dynamics of inner ear hair cells
,”
Sci. Rep.
8
,
3366
(
2018
), .
35.
J. D.
Salvi
,
D. Ó.
Maoiléidigh
,
B. A.
Fabella
,
M.
Tobin
, and
A. J.
Hudspeth
, “
Control of a hair bundle’s mechanosensory function by its mechanical load
,”
Proc. Natl. Acad. Sci. U.S.A.
112
,
E1000
(
2015
), .
36.
J.
Faber
and
D.
Bozovic
, “
Chimera states and frequency clustering in systems of coupled inner-ear hair cells
,”
Chaos
31
,
073142
(
2021
),.
This content is only available via PDF.
You do not currently have access to this content.