When elicited by two stimulus tones (at frequencies f1 and f2, f2 > f1), the amplitudes of specific distortion-product otoacoustic emission (DPOAE) components exhibit a characteristic bandpass shape as the ratio between f2 and f1 is varied. This bandpass shape has been attributed to various mechanisms including intracochlear resonance, suppression, and wave interference, and has been proposed to be related to cochlear frequency tuning. While human studies suggest modest correlations between psychophysical tuning and the tuning of DPOAE amplitude vs. f2/f1 ratio functions, a relationship between the latter and the tuning of cochlear mechanical responses has yet to be established. This was addressed here through direct comparisons of DPOAEs and cochlear vibrations in wild-type CBA/CaJ mice. DPOAEs were elicited using a fixed-f2, swept-f1 paradigm, and optical coherence tomography was used to measure displacements from cochlear locations with characteristic frequencies near f2. The tuning sharpness of 2f1f2 DPOAE ratio functions was found to be remarkably similar to that of basilar membrane and/or tectorial membrane responses to single tones, with the tuning sharpness of all responses increasing similarly with decreasing stimulus level. This relationship was observed for f2 frequencies ranging from ∼8 to 22 kHz. Intracochlear distortion products did not exhibit a bandpass shape as the f2/f1 ratio was varied, indicating that interference between distortion products traveling to the stapes may be responsible for the tuning of the DPOAE ratio function. While these findings suggest that DPOAE ratio functions could be used to noninvasively infer cochlear tuning, it remains to be determined whether this relationship holds in other species and for lower frequency regions.

1.
P.
Avan
,
B.
Büki
, and
C.
Petit
.
Phys. Rev.
93
,
1563
1619
(
2013
).
2.
D. T.
Kemp
,
Arch. Oto-Rhino-Laryngol.
224
,
37
45
(
1979
).
4.
P. F.
Fahey
and
J. B.
Allen
, “Characterization of cubic intermodulation distortion products in the cat external auditory meatus,” in
Peripheral Auditory Mechanisms
, edited by
J. B.
Allen
,
J. L.
Hall
,
A.
Hubbard
,
S. T.
Neely
, and
A.
Tubis
(
Springer-Verlag
,
New York
,
1986
), pp.
314
321
.
5.
F. P.
Harris
,
B. L.
Lonsbury-Martin
,
B. B.
Stagner
,
A. C.
Coats
, and
G. K.
Martin
,
J. Acoust. Soc. Am.
85
,
220
229
(
1989
).
6.
A. M.
Brown
and
S. A.
Gaskill
, “Can basilar membrane tuning be inferred from distortion measurement?” in
The Mechanics and Biophysics of Hearing
, edited by
P. J.
Dallos
,
C. D.
Geisler
,
J. W.
Matthews
,
M. A.
Ruggero
, and
C. R.
Steele
(
Springer-Verlag
,
New York
,
1990
), pp.
164
169
.
7.
W. S.
Rhode
,
J. Acoust. Soc. Am.
122
,
2725
2737
(
2007
).
8.
A. M.
Brown
,
S. A.
Gaskill
, and
D. M.
Williams
,
Proc. R. Soc. London, Ser. B
250
,
29
34
(
1992
).
9.
J. B.
Allen
and
P. F.
Fahey
,
J. Acoust. Soc. Am.
94
,
809
816
(
1993
).
10.
A. N.
Lukashkin
,
V. A.
Lukashkina
,
P. K.
Legan
,
G. P.
Richardson
, and
I. J.
Russell
,
J. Neurophys.
91
,
163
171
(
2004
).
11.
L. J.
Kanis
and
E.
de Boer
,
J. Acoust. Soc. Am.
101
,
1527
1531
(
1997
).
12.
C. L.
Talmadge
,
A.
Tubis
,
G. R.
Long
, and
P.
Piskorski
,
J. Acoust. Soc. Am.
104
,
1517
1543
(
1998
).
13.
C. A.
Shera
, “Wave interference in the generation of reflection-and distortion-source emissions,” in
Biophysics of the Cochlea: From Molecules to Models
, edited by
A. W.
Gummer
(
World Scientific
,
Singapore
,
2003
), pp.
439
453
.
14.
R.
Sisto
,
U. S.
Wilson
,
S.
Dhar
, and
A.
Moleti
,
J. Assoc. Res. Otolaryngol.
19
,
511
522
(
2018
).
15.
U. S.
Wilson
,
J.
Browning-Kamins
,
A. S.
Durante
,
S.
Boothalingam
,
A.
Moleti
,
R.
Sisto
, and
S.
Dhar
,
Int. J. of Audiol.
60
,
890
899
(
2021
).
16.
A. M.
Brown
,
S. A.
Gaskill
,
R. P.
Carlyon
, and
D. M.
Williams
,
J. Acoust. Soc. Am.
93
,
3291
3297
(
1993
).
17.
H. Y.
Lee
,
P. D.
Raphael
,
J.
Park
,
A. K.
Ellerbee
,
B. E.
Applegate
, and
J. S.
Oghalai
,
Proc. Natl. Acad. Sci. U.S.A.
112
,
3128
3133
(
2015
).
18.
J. B.
Dewey
,
A.
Altoè
,
C. A.
Shera
,
B. E.
Applegate
, and
J. S.
Oghalai
(
2021
).
Proc. Natl. Acad. Sci. U.S.A.
118
,
e2025206118
(2021).
19.
A.
Vavakou
,
N. P.
Cooper
, and
M.
van der Heijden
,
eLife
8
,
e47667
(
2019
).
20.
C. A.
Shera
,
C. L.
Talmadge
, and
A.
Tubis
,
J. Acoust. Soc. Am.
108
,
2933
2948
(
2000
).
21.
C. A.
Shera
and
K. K.
Charaziak
,
Cold Spring Harb. Perspect. Med.
9
,
a033498
(
2019
).
22.
N. P.
Cooper
and
W. S.
Rhode
,
Hear. Res.
82
,
225
243
(
1995
).
23.
A.
Recio-Spinoso
and
J. S.
Oghalai
,
J. Physiol.
595
,
4549
4561
(
2017
).
24.
D. J.
Konrad-Martin
,
S.
Norton
,
K. E.
Mascher
, and
B. L.
Tempel
,
Hear. Res.
151
,
205
220
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.