Speech is a complex real-world stimulus that consists of time-varying contributions in many frequency bands. The inner ear, or cochlea, not only transduces the acoustic vibrations into electrical signals, but also spatially segregates the acoustic waveform into different frequency components, as well as mechanically amplifies the vibrations in frequency bands where the amplitude is low. This processing of the speech signal can potentially be controlled through efferent nerve fibers that extend from higher processing centers in the brain to the cochlea. However, we are currently lacking methodological tools to non-invasively investigate the putative role of top-down feedback on speech processing in humans. Here we develop such a method that builds on distortion-product otoacoustic emissions (DPOAEs) related to the temporal fine structure of the voiced parts of speech (speech-DPOAEs).

1.
C.
Cherry
, “
On human communication
,” (
1966
).
2.
A. C.
DAvIs
, “
The prevalence of hearing impairment and reported hearing disability among adults in great britain
,”
International journal of epidemiology
18
,
911
917
(
1989
).
3.
A.
Davis
and
S.
Wood
, “
The epidemiology of childhood hearing impairment: factors relevant to planning of services
,”
British Journal of Audiology
26
,
77
90
(
1992
).
4.
D. R.
Moore
,
S.
Rosen
,
D.-E.
Bamiou
,
N. G.
Campbell
, and
T.
Sirimanna
, “
Evolving concepts of developmental auditory processing disorder (apd): a british society of audiology apd special interest group ‘white paper
’,”
International Journal of Audiology
52
,
3
13
(
2013
).
5.
A. C.
Davis
and
H. J.
Hoffman
, “
Hearing loss: rising prevalence and impact
,”
Bulletin of the World Health Organization
97
,
646
(
2019
).
6.
R.
Plomp
, “
A signal-to-noise ratio model for the speech-reception threshold of the hearing impaired
,”
Journal of Speech, Language, and Hearing Research
29
,
146
154
(
1986
).
7.
D. R.
Moore
, “
Auditory processing disorder (apd): Definition, diagnosis, neural basis, and intervention
,”
Audiological Medicine
4
,
4
11
(
2006
).
8.
E.
Skoe
and
N.
Kraus
, “
Auditory brainstem response to complex sounds: a tutorial
,”
Ear and Hearing
31
,
302
(
2010
).
9.
E. B.
Coffey
,
S. C.
Herholz
,
A. M.
Chepesiuk
,
S.
Baillet
, and
R. J.
Zatorre
, “
Cortical contributions to the auditory frequency-following response revealed by meg
,”
Nature Communications
7
,
1
11
(
2016
).
10.
E. B.
Coffey
,
T.
Nicol
,
T.
White-Schwoch
,
B.
Chandrasekaran
,
J.
Krizman
,
E.
Skoe
,
R. J.
Zatorre
, and
N.
Kraus
, “
Evolving perspectives on the sources of the frequency-following response
,”
Nature Communications
10
,
1
10
(
2019
).
11.
G. M.
Bidelman
, “
Subcortical sources dominate the neuroelectric auditory frequency-following response to speech
,”
Neuroimage
175
,
56
69
(
2018
).
12.
N.
Kraus
and
T.
Nicol
, “Brainstem encoding of speech and music sounds in humans,”
Oxford Handbook of the Auditory Brainstem. Oxford
,
UK
:
Oxford University Press. Advance online publication
(
2018
).
13.
A. E.
Forte
,
O.
Etard
, and
T.
Reichenbach
, “
The human auditory brainstem response to running speech reveals a subcortical mechanism for selective attention
,”
elife
6
,
e27203
(
2017
).
14.
R. K.
Maddox
and
A. K.
Lee
, “
Auditory brainstem responses to continuous natural speech in human listeners
,”
Eneuro
5
(
2018
).
15.
O.
Etard
,
M.
Kegler
,
C.
Braiman
,
A. E.
Forte
, and
T.
Reichenbach
, “
Decoding of selective attention to continuous speech from the human auditory brainstem response
,”
Neuroimage
200
,
1
11
(
2019
).
16.
M.
Kegler
,
O.
Etard
,
A.
Forte
, and
T.
Reichenbach
, “
Pyhton code for the computation of complex trfs (ctrfs). github
,” (
2018
).
17.
R. F.
Huffman
and
O.
Henson
Jr, “
The descending auditory pathway and acousticomotor systems: connections with the inferior colliculus
,”
Brain Research Reviews
15
,
295
323
(
1990
).
18.
M.
Saiz-Alía
and
T.
Reichenbach
, “
Computational modeling of the auditory brainstem response to continuous speech
,”
Journal of Neural Engineering
17
,
036035
(
2020
).
19.
T.
Reichenbach
and
A.
Hudspeth
, “
The physics of hearing: fluid mechanics and the active process of the inner ear
,”
Reports on Progress in Physics
77
,
076601
(
2014
).
20.
P.
Dallos
, “
The active cochlea
,”
Journal of Neuroscience
12
,
4575
4585
(
1992
).
21.
R.
Probst
,
B. L.
Lonsbury-Martin
, and
G. K.
Martin
, “
A review of otoacoustic emissions
,”
The Journal of the Acoustical Society of America
89
,
2027
2067
(
1991
).
22.
J.
Pickles
,
An introduction to the physiology of hearing
(
Brill
,
1998
).
23.
J. J. Guinan
Jr
, “
Olivocochlear efferents: Their action, effects, measurement and uses, and the impact of the new conception of cochlear mechanical responses
,”
Hearing Research
362
,
38
47
(
2018
).
24.
J. J.
Guinan
Jr, “
Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans
,”
Ear and Hearing
27
,
589
607
(
2006
).
25.
N. R.
Clark
,
G. J.
Brown
,
T.
Jürgens
, and
R.
Meddis
, “
A frequency-selective feedback model of auditory efferent suppression and its implica-tions for the recognition of speech in noise
,”
The Journal of the Acoustical Society of America
132
,
1535
1541
(
2012
).
26.
O.
Etard
,
M.
Kegler
,
C.
Braiman
,
A. E.
Forte
, and
T.
Reichenbach
, “
Real-time decoding of selective attention from the human auditory brainstem response to continuous speech
,”
bioRxiv
,
259853
(
2018
).
27.
M.
Saiz-Alía
,
A. E.
Forte
, and
T.
Reichenbach
, “
Individual differences in the attentional modulation of the human auditory brainstem response to speech inform on speech-in-noise deficits
,”
Scientific Reports
9
,
1
10
(
2019
).
28.
M.
Saiz-Alía
,
P.
Miller
, and
T.
Reichenbach
, “
Otoacoustic emissions evoked by the time-varying harmonic structure of speech
,”
Eneuro
8
(
2021
).
29.
A.
Kösem
and
V.
Van Wassenhove
, “
Distinct contributions of low-and high-frequency neural oscillations to speech comprehension
,”
Language, Cognition and Neuroscience
32
,
536
544
(
2017
).
30.
N.
Ding
,
L.
Melloni
,
H.
Zhang
,
X.
Tian
, and
D.
Poeppel
, “
Cortical tracking of hierarchical linguistic structures in connected speech
,”
Nature Neuroscience
19
,
158
164
(
2016
).
31.
M. P.
Broderick
,
A. J.
Anderson
,
G. M.
Di Liberto
,
M. J.
Crosse
, and
E. C.
Lalor
, “
Electrophysiological correlates of semantic dissimilarity reflect the comprehension of natural, narrative speech
,”
Current Biology
28
,
803
809
(
2018
).
32.
O.
Etard
and
T.
Reichenbach
, “
Neural speech tracking in the theta and in the delta frequency band differentially encode clarity and compre-hension of speech in noise
,”
Journal of Neuroscience
39
,
5750
5759
(
2019
).
33.
N.
Ding
and
J. Z.
Simon
, “
Neural coding of continuous speech in auditory cortex during monaural and dichotic listening
,”
Journal of Neuro-physiology
107
,
78
89
(
2012
).
34.
S.
Srinivasan
,
A.
Keil
,
K.
Stratis
,
A. F.
Osborne
,
C.
Cerwonka
,
J.
Wong
,
B. L.
Rieger
,
V.
Polcz
, and
D. W.
Smith
, “
Interaural attention modulates outer hair cell function
,”
European Journal of Neuroscience
40
,
3785
3792
(
2014
).
35.
J. A.
O’sullivan
,
A. J.
Power
,
N.
Mesgarani
,
S.
Rajaram
,
J. J.
Foxe
,
B. G.
Shinn-Cunningham
,
M.
Slaney
,
S. A.
Shamma
, and
E. C.
Lalor
, “
Attentional selection in a cocktail party environment can be decoded from single-trial eeg
,”
Cerebral Cortex
25
,
1697
1706
(
2015
).
36.
D.
Jochaut
,
K.
Lehongre
,
A.
Saitovitch
,
A.-D.
Devauchelle
,
I.
Olasagasti
,
N.
Chabane
,
M.
Zilbovicius
, and
A.-L.
Giraud
, “
Atypical coordina-tion of cortical oscillations in response to speech in autism
,”
Frontiers in Human Neuroscience
9
,
171
(
2015
).
37.
M.
Lizarazu
,
M.
Lallier
,
M.
Bourguignon
,
M.
Carreiras
, and
N.
Molinaro
, “
Impaired neural response to speech edges in dyslexia
,”
Cortex
135
,
207
218
(
2021
).
38.
G. M.
Di Liberto
,
V.
Peter
,
M.
Kalashnikova
,
U.
Goswami
,
D.
Burnham
, and
E. C.
Lalor
, “
Atypical cortical entrainment to speech in the right hemisphere underpins phonemic deficits in dyslexia
,”
Neuroimage
175
,
70
79
(
2018
).
39.
C.
Braiman
,
E. A.
Fridman
,
M. M.
Conte
,
H. U.
Voss
,
C. S.
Reichenbach
,
T.
Reichenbach
, and
N. D.
Schiff
, “
Cortical response to the natural speech envelope correlates with neuroimaging evidence of cognition in severe brain injury
,”
Current Biology
28
,
3833
3839
(
2018
).
40.
A.-L.
Giraud
and
D.
Poeppel
, “
Cortical oscillations and speech processing: emerging computational principles and operations
,”
Nature Neu-roscience
15
,
511
517
(
2012
).
41.
N.
Ding
and
J. Z.
Simon
, “
Cortical entrainment to continuous speech: functional roles and interpretations
,”
Frontiers in Human Neuroscience
8
,
311
(
2014
).
42.
J. E.
Peelle
,
J.
Gross
, and
M. H.
Davis
, “
Phase-locked responses to speech in human auditory cortex are enhanced during comprehension
,”
Cerebral Cortex
23
,
1378
1387
(
2013
).
43.
G. M.
Di Liberto
,
J. A.
O’Sullivan
, and
E. C.
Lalor
, “
Low-frequency cortical entrainment to speech reflects phoneme-level processing
,”
Current Biology
25
,
2457
2465
(
2015
).
44.
C.
Micheyl
and
A. J.
Oxenham
, “
Across-frequency pitch discrimination interference between complex tones containing resolved harmonics
,”
The Journal of the Acoustical Society of America
121
,
1621
1631
(
2007
).
45.
M. J.
Polonenko
and
R. K.
Maddox
, “
Exposing distinct subcortical components of the auditory brainstem response evoked by continuous naturalistic speech
,”
Elife
10
,
e62329
(
2021
).
46.
T.
Duke
and
F.
Jülicher
, “
Active traveling wave in the cochlea
,”
Physical Review Letters
90
,
158101
(
2003
).
47.
F.
Jülicher
,
D.
Andor
, and
T.
Duke
, “
Physical basis of two-tone interference in hearing
,”
Proceedings of the National Academy of Sciences U.S.A.
98
,
9080
9085
(
2001
).
48.
N.
Ciganović
,
A.
Wolde-Kidan
, and
T.
Reichenbach
, “
Hair bundles of cochlear outer hair cells are shaped to minimize their fluid-dynamic resistance
,”
Scientific Reports
7
,
1
9
(
2017
).
49.
L.
Sumner
,
J.
Mestel
, and
T.
Reichenbach
, “
Steady streaming as a method for drug delivery to the inner ear
,”
Scientific Reports
11
,
1
12
(
2021
).
50.
D.
McFadden
, “
Sex differences in the auditory system
,”
Developmental Neuropsychology
14
,
261
298
(
1998
).
51.
D.
McFadden
,
G. K.
Martin
,
B. B.
Stagner
, and
M. M.
Maloney
, “
Sex differences in distortion-product and transient-evoked otoacoustic emissions compared
,”
The Journal of the Acoustical Society of America
125
,
239
246
(
2009
).
This content is only available via PDF.
You do not currently have access to this content.