In 2019, the coronavirus disease (COVID-19), which started in Wuhan, China, spread throughout the world. COVID-19 is a disease that infects the human respiratory system. It has developed more widely and is reported to have mutated into several variants, one of which is Omicron. Until now, there is no specific antiviral drug compound used to cure COVID-19. Therefore, several drugs were used to treat COVID-19 (such as interferon, antiviral, or antibiotics) without evidence of efficacy in humans. Therefore, several drugs are used to treat COVID-19, such as antiviral drugs, antibiotics, and interferons, without evidence of efficacy in humans. However, the use of this drug is limited due to side effects. Based on that fact, the use of natural products as therapeutic agents found in nature can be explored for the treatment of COVID-19. Formulating various herbs with the ingredient rosella (Hibiscus sabdariffa), sappan wood (Caesalpinia sappan), ginger (Zingiber officinale), and honey is one traditional drink from Indonesia. These ingredients contain a lot of natural products that are potent to be drug compounds, such as rosmarinic acid (1) from rosella, brazilin (2) in sappan wood, 10-gingerol (3) in ginger, and kaempferol (4) in honey has been explored their potency to be COVID-19 therapeutic agent. The docking method has been validated by redocking the native ligand to Mpro of COVID-19, omicron variant, (PDB ID 7TOB) as a receptor protein. Compound 4 (ΔG=-8.2 kcal mol-1) has more negative binding energy than native ligan (ΔG=-8.1 kcal mol-1) of 7TOB. Instead, the binding energy of compounds 1, 2, and 3 are -7.6 kcal mol-1, 7.4 kcal mol-1, and -5.5 kcal mol-1. Based on the analysis of binding energy and binding similarity of active sites, the compound in traditional drinks from Indonesia is expected to be a potential alternative to a therapeutic agent for COVID-19.

1.
C.
Huang
et al,
The Lancet
395
,
497
506
(
2020
).
3.
A.
Tufan
,
A. Avanoğlu
Güler
, and
M.
Matucci-Cerinic
,
Turk. J. Med. Sci.
50
,
620
632
(
2020
).
4.
S.
Bharadwaj
,
K. E.
Lee
,
V. D.
Dwivedi
, and
S. G.
Kang
,
Life Sci.
257
,
118080
(
2020
).
5.
M.
Shah
and
H. G.
Woo
,
Front. Immunol.
12
,
830527
(
2021
).
6.
S.
Ettaboina
,
K.
Nakkala
, and
K.
Laddha
,
SciMedicine J.
3
,
399
406
(
2021
).
7.
M.
Shah
and
H. G.
Woo
,
Mol. Cells
44
,
408
421
(
2021
).
8.
B.
Türkmenoğlu
,
J. Inst. Sci. Technol.
,
1615
1623
(
2022
).
9.
R. L.
Atmar
and
N.
Finch
,
Antimicrob. Agents Chemother.
66
,
e0240421
(
2022
).
11.
N. W.
Dodi Iskandar
and
N. W.
Dodi Iskandar
,
J. Hunan Univ. Nat. Sci.
49
, Art. no.
3
(
2022
).
12.
N.
Błaszczyk
,
A.
Rosiak
, and
J.
Kałużna-Czaplińska
,
Forests
12
, Art. no.
5
(
2021
).
13.
M.
Inggrid
,
Y.
Hartanto
, and
J. F.
Widjaja
,
Rekayasa Hijau J. Teknol. Ramah Lingkung.
2
, Art. no.
3
(
2018
).
14.
T. D.
Widyaningsih
,
M. F. A.
Nugroho
, and
A.
Ulilalbab
,
Amerta Nutr.
6
, Art. no.
1
(
2022
).
15.
D. L. C.
Pradana
and
A. A.
Wulandari
,
J. Insan Farm. Indones.
2
,
271
277
(
2019
).
16.
T.
Sumaryada
and
C.
Pramudita
,
Biointerface Res. Appl. Chem.
11
,
9827
9835
(
2020
).
17.
E.
Yuanita
,
S.
Sudirman
,
N.
Dharmayani
,
M.
Ulfa
,
S.
Hadisaputra
, and
J.
Syahri
,
Molekul
17
,
1
(
2022
).
18.
P. R.
Ferdian
et al,
Media Penelit. Dan Pengemb. Kesehat.
31
, Art. no.
3
(
2021
).
19.
D.
Elebeedy
et al,
RSC Adv.
11
,
29267
29286
(
2021
).
20.
O.
Trott
and
A. J.
Olson
,
J. Comput. Chem.
31
,
455
461
(
2010
).
21.
J.
Eberhardt
,
D.
Santos-Martins
,
A. F.
Tillack
, and
S.
Forli
,
J. Chem. Inf. Model.
61
,
3891
3898
(
2021
).
22.
N. S.
Pagadala
,
K.
Syed
, and
J.
Tuszynski
,
Biophys. Rev.
9
,
91
102
(
2017
).
23.
R.
Arora
,
L.
Tchertanov
,
R.
Arora
, and
L.
Tchertanov
,
The HIV-1 Integrase: Modelling and Beyond
(
IntechOpen
,
2013
).
24.
A. C.
Khayrani
et al,
J. King Saud Univ. Sci.
33
,
101297
(
2021
).
25.
J. C.
Ferreira
,
S.
Fadl
,
A. J.
Villanueva
, and
W. M.
Rabeh
,
Front. Chem.
9
,
692168
(
2021
).
26.
Z.
Jin
et al,
Nature
582
, Art. no.
7811
(
2020
).
This content is only available via PDF.
You do not currently have access to this content.