The Magnetic Force Microscopy (MFM) combines the advantages of the Atomic Force Microscopy (AFM) with the ability to visualize the surface magnetic domain structure of samples. Higher contrast in the MFM imaging means better ability to see magnetic structures and distinguish them from noise. One of the parameters affecting the MFM image contrast is the free cantilever oscillation amplitude of the probe. In this study, we present MFM measurements performed on a magnetic videotape at two different levels of free cantilever oscillation amplitude. The results showed that scanning at higher amplitude can enhance the signal-to-noise ratio and thus the contrast of the MFM image. Conversely, scanning at lower amplitude increases the perception level of the noise in the image. However, it should be noted that in the scope of our experimental conditions, changes in the image were not significant. In addition, it was found that precise adjustment of the tip-to-surface distance plays a crucial role in this MFM experiment, which is not the same as the “lift height” parameter.

1.
L.
Yue
and
S.-H.
Liou
, “Magnetic Force Microscopy Studies of Magnetic Features and Nanostructures” in:
Scanning Probe Microscopy in Nanoscience and Nanotechnology 2
, edited by
B.
Bhushan
(
Springer
,
Berlin
,
2011
), pp.
287
319
.
2.
O.
Kazakova
,
R.
Puttock
,
C.
Barton
,
H.
Corte-León
,
M.
Jaafar
,
V.
Neu
, and
A.
Asenjo
,
J. Appl. Phys.
125
(
6
),
060901
(
2019
).
3.
Digital Instruments, “
Magnetic Force Microscopy (MFM): Applicable to Dimension™ Series and MultiMode™ Systems
”,
Support Note No. 229, Rev. B.
,
1996
.
4.
T.
Shinjo
,
T.
Okuno
,
R.
Hassdorf
,
K.
Shigeto
, and
T.
Ono
,
Science
289
,
930
932
(
2000
).
5.
M.
Hehn
,
K.
Ounadjela
,
J.-P.
Bucher
,
F.
Rousseaux
,
D.
Decanini
,
B.
Bartenlian
, and
C.
Chappert
,
Science
272
,
1782
1785
(
1996
).
6.
Iu. V.
Vetrova
,
M.
Zelent
,
J.
Šoltýs
,
V. A.
Gubanov
,
A. V.
Sadovnikov
,
T.
Šcepka
,
J.
Dérer
,
R.
Stoklas
,
V.
Cambel
, and
M.
Mruczkiewicz
,
Appl. Phys. Lett.
118
(
21
),
212409
(
2021
).
7.
M.
Liebmann
,
A.
Schwarz
,
S. M.
Langkat
, and
R.
Wiesendanger
,
Rev. Sci. Instrum.
73
(
10
),
3508
3514
(
2002
).
8.
P.
Ares
,
M.
Jaafar
,
A.
Gil
,
J.
Gómez-Herrero
, and
A.
Asenjo
,
Small
11
(
36
),
4731
4736
(
2015
).
9.
P.
Grütter
and
R.
Allenspach
,
Geophys. J. Int.
116
(
2
),
502
505
(
1994
).
10.
B.
Vellekoop
,
L.
Abelmann
,
S.
Porthun
, and
C.
Lodder
,
J. Magn. Magn. Mater.
190
(
1-2
),
148
151
(
1998
).
11.
M.
Pavúk
,
M.
Weis
,
G.
Farkas
, and
V.
Slugeň
, “
Domain structure in thin nickel film observed by low- and high-coercivity Magnetic Force Microscopy probe
” in:
Proceedings of APCOM 2015
, edited by
J.
Vajda
and
I.
Jamnický
(
Nakladateľstvo STU
,
Bratislava
,
2015
, ISBN 978-80-227-4373-0), pp.
47
50
.
12.
K.
Babcock
,
V.
Elings
,
M.
Dugas
, and
S.
Loper
,
IEEE Trans. Magn.
30
(
6
),
4503
4505
(
1994
).
13.
P.
Grütter
,
D.
Rugar
,
H. J.
Mamin
,
G.
Castillo
,
S. E.
Lambert
,
C.-J.
Lin
,
R. M.
Valletta
,
O.
Wolter
,
T.
Bayer
, and
J.
Greschner
,
Appl. Phys. Lett.
57
(
17
),
1820
1822
(
1990
).
14.
L.
Folks
,
M. E.
Best
,
P. M.
Rice
,
B. D.
Terris
,
D.
Weller
,
J. N.
Chapman
,
Appl. Phys. Lett.
76
,
909
911
(
2000
).
15.
N. H.
Freitag
,
C. F.
Reiche
,
V.
Neu
,
P.
Devi
,
U.
Burkhardt
,
C.
Felser
,
D.
Wolf
,
A.
Lubk
,
B.
Büchner
, and
T.
Mühl
,
Commun. Phys.
6
(
1
),
11
(
2023
).
16.
V. B.
Elings
and
J. A.
Gurley
, U.S. Patent No. 5,308,974 (3 May
1994
).
17.
M.
Precner
,
J.
Fedor
,
J.
Šoltýs
, and
V.
Cambel
,
Nanotechnology
26
(
5
),
055304
(
2015
).
18.
V.
Cambel
,
D.
Gregušová
,
P.
Eliáš
,
J.
Fedor
,
I.
Kostič
,
J.
Maňka
, and
P.
Ballo
,
JEEEC
62
(
1
),
37
43
(
2011
).
19.
T. R.
Albrecht
,
P.
Grütter
,
D.
Horne
, and
D.
Rugar
,
J. Appl. Phys.
69
(
2
),
668
673
(
1991
).
20.
X.
Zhu
, “
Magnetic Force Microscopy Studies of Submicron and Nanoscale Magnet Arrays
”, Ph.D. thesis,
McGill University
,
2002
.
21.
S. B.
Luitjens
and
A. M. A
Rijckaert
,
J. Magn. Magn. Mater.
193
(
1-3
),
17
23
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.