The aim of our work was to verify the quantification of boron content by 730 keV and 2640 keV proton beams using Nuclear Reaction Analysis (NRA) and Elastic Backscattering Spectrometry (EBS) analysis. The evaluation procedure of 11B(p,α1)8Be nuclear reaction boron measurements in homogeneous layers in heavy and light matrix was assessed. The sensitivity of our Ion Beam Analysis (IBA) setup to boron analyses was also tested. More common is boron analysis by 11B(p,p0)11B elastic backscattering and 11B(p,α0)8Be nuclear reactions. But in the case of (p,p0) the signal of heavier matrix elements interferes with the boron signal and by lower content it makes boron quantification even impossible. With (p,α0) it is also possible to obtain a depth concentration profile, but the overall sensitivity is more than one order of magnitude higher in the case of (p,α1). The achieved measurement sensitivity 15 atomic ppm with (p,α1) can be easily enhanced by increasing the fluence of protons and inserting an absorber in front of the detector, so that the sensitivity bellow 1 at. ppm can be reached.

1.
H.
Bolvardi
,
J.
Emmerlich
,
M. to
Baben
,
J.
von Appen
,
R
Dronskowski
, and
J. M.
Schneider
,
J Phys Condens Matter.
25
(
4
),
045501
(
2013
).
2.
V.
Moraes
,
C.
Fuger
,
V.
Paneta
,
D.
Primetzhofer
,
P.
Polcik
,
H.
Bolvardi
,
M.
Arndt
,
H.
Riedl
,
P.H.
Mayrhofer
,
Scr. Mater.
155,
5
10
(
2018
).
3.
Y.
Einaga
,
Acc. Chem. Res.
55
(
24
)
3605
3615
(
2022
).
4.
E.
Pitthan
,
M.V.
Moro
,
S.A.
Correa
,
D.
Primetzhofer
,
Surface & Coatings Technology
417
(
2021
)
127188
.
5.
J.R.
Tesmer
,
M.
Nastasi
,
Handbook of Modern Ion Beam Materials Analysis
, first ed.,
Materials Research Society
,
Pittsburgh
, (
1995
).
6.
M.
Kokkoris
,
A.
Kafkarkou
,
V.
Paneta
,
R.
Vlastou
,
P.
Misaelides
,
A.
Lagoyannis
,
Nucl. Instr. Meth. Phys. Res. B
,
268
,
3539
3545
(
2010
), data retrieved from the IBANDL database, IAEA, 2022.
7.
M.
Mayer
,
SIMNRA User’s Guide, Report IPP 9/113
, (
1997
).
Max-Planck-Institut für Plasmaphysik
,
Germany
.
8.
M.
Mayer
,
A.
Annen
,
W.
Jacob
,
S.
Grigull
,
Nucl. Instr. Meth. Phys. Res. B
,
143
,
244
252
(
1998
).
9.
J.
Liu
,
X.
Lu
,
X.
Wang
,
W.-K.
Chu
,
Nucl. Instr. Meth. Phys. Res. B
,
190
,
107
111
(
2002
), data retrieved from the IBANDL database,
IAEA
, 2022.
10.
A.F.
Gurbich
,
Nucl. Instr. Meth. Phys. Res. B
,
371
,
27
32
(
2016
).
11.
P. Noga. J.
Dobrovodský
,
D.
Vaňa
,
M.
Beňo
,
A.
Závacká
,
M.
Muška
,
R.
Halgaš
,
S.
Minárik
,
R.
Riedlmajer
,
Nucl. Instr. Meth. Phys. Res. B
,
409
,
264
267
(
2017
).
12.
J.
Dobrovodský
,
M.
Beňo
,
D.
Vaňa
,
P.
Bezák
,
P.
Noga
,
Nuclear Inst. and Methods in Physics Research B
,
450
,
168
172
, (
2019
).
This content is only available via PDF.
You do not currently have access to this content.