Nowadays, various mosque architectural designs are beautiful, famous, iconic and contain philosophical values. Some experts have explored the characteristics and found that different architectural construction of mosques in some countries contains many mathematical elements or Ethnomathematics that can be used as a starting point for learning mathematics. However, Ethnomathematics has not been studied much by researchers or mathematics educators in Brunei Darussalam. Many architectural designs are good to explore and, notably, familiar to students, one of which is the Sultan Omar Ali Saifuddien (SOAS) mosque. This mosque is an iconic building and a national landmark, attracting many tourists who visit the country. As far as is known, teachers in Brunei have not used Ethnomathematics as a starting point in mathematics learning. Many studies have found that utilizing Ethnomathematics may make it easier for students to understand mathematical concepts. Therefore, this study aims to explore the mathematical elements found in the architectural design of the SOAS mosque using ethnographic methods. We obtained our research data through literature studies, documentation, and field notes. We found some interesting elements of the characteristics, patterns, and forms of ornaments in the architecture of the SOAS mosque that can be used as a starting point for studying mathematical concepts. Furthermore, the philosophical values of the mosque design creations have the potential to foster good student character and behaviour. It is hoped that this research can be used as a reference for researchers and mathematics teachers to develop learning with Ethnomathematics around students so that they can learn and understand the concepts taught in the mathematics subject.

1.
B. A.
Hussainmiya
,
The Malay identity in Brunei Darussalam and Sri Lanka
.
A Multidisciplinary Journal
10
,
65
78
(
2010
)
2.
R. O.
Lopes
and
N. B. M.
Hasnan
,
The expression of cultural identity in mosque architecture in Brunei Darussalam
.
TRaNS: Trans-Regional and-National Studies of Southeast Asia
10
,
39
58
(
2022
).
3.
R. O.
Lopes
,
Defining Bruneian cultural identity through contemporary artistic practice
.
In Engaging Modern Brunei
,
199
214
(
2022
).
4.
D.
Deterding
and
H. M. Y.
Ho
,
An overview of the language, literature and culture of Brunei Darussalam
.
In Engaging Modern Brunei
,
1
17
(
2021
).
5.
S.
Supiyati
,
F.
Hanum
and
Jailani
,
Ethnomathematics in Sasaknese architecture
.
Journal on Mathematics Education
10
,
47
57
(
2019
).
6.
D.
Permatasari
,
Jai’darul Mutaqqim mosque: Ethnomathematics exploratory
.
Kadikma
13
,
24
39
(
2022
).
7.
N.
Fajriah
and
Y.
Suryaningsih
,
Ethnomathematics of the Jami Mosque Jingah river as a source mathematics learning
.
Journal of Physics: Conference Series
1760
(
2021
).
8.
T.
Purniati
,
Turmudi
and
D.
Suhaedi
.
Ethnomathematics: Exploration of a mosque building and its ornaments
.
Journal of Physics: Conference Series
1521
(
2020
).
9.
T.
Purniati
,
T.
Turmudi
,
D.
Juandi
and
D.
Suhaedi
,
Ethnomathematics exploration of the Masjid Raya Bandung ornaments in transformation geometry materials
.
Journal of Medives : Journal of Mathematics Education IKIP Veteran Semarang
5
,
235
(
2021
).
10.
M. H.
Asnawi
,
H. Annisa
,
Moh
,
M.
Ulum
,
N. L.
Arofah
and
N. E.
Hendrawati
,
Ethnomathematics exploration at Agung Jami’ Malang mosque in improving students’ mathematic problem solving ability
.
IndoMath: Indonesia Mathematics Education
5
,
13
(
2022
).
11.
A.
Robertson
,
Revisiting the geometry of the Sala de Dos Hermanas
.
In Bridges Donostia: Mathematics, Music, Art, Architecture, Culture
,
303
310
(
2007
).
12.
A.
Küçük
,
Ethnomathematics in Anatolia (on Turkey): Mathematical thoughts in multiculturalism
.
Revista Latinoamericana de Etnomatemática
7
,
171
184
(
2014
).
13.
U.
D’Ambrosio
,
Ethnomathematics and its place in the history and pedagogy of mathematics
.
For the Learning of Mathematics
5
,
44
48
(
1985
).
14.
M.
Rosa
and
D. C.
Orey
,
State of the art in ethnomathematics
,
11
37
(
2016
).
15.
U.
D’Ambrosio
,
An overview of the history of ethnomathematics
,
5
10
(
2016
).
16.
I.
Risdiyanti
and
R. C. I.
Prahmana
,
Ethnomathematics (Teori dan implementasinya: Suatu pengantar)
(
2020
).
17.
L.
Shirley
and
P.
Palhares
, Ethnomathematics and its diverse pedagogical approaches. In
G.
Kaiser
(Ed.),
Current and future perspectives of ethnomathematics as a program
,
13
17
(
Springer International Publishing
,
2016
).
18.
I.
Risdiyanti
and
R. C. I.
Prahmana
,
Designing learning trajectory of set through the Indonesian shadow puppets and Mahabharata stories
.
Infinity Journal
10
,
331
(
2021
).
19.
U.
D’Ambrosio
,
Ethnomathematics: Perspectives
.
North American Study Group on Ethnomathematics News
2
(
1
),
2
3
(
2007
).
20.
R. C. I.
Prahmana
and
A.
Istiandaru
,
Learning sets theory using shadow puppet: A study of Javanese ethnomathematics
.
Mathematics
9
(
2021
).
21.
H.
Freudenthal
,
Revisiting mathematics education: China lectures
(
Springer Science & Business Media: Cham
,
Switzerland
,
2006
).
22.
I.
Risdiyanti
and
R. C. I.
Prahmana
, Ethnomathematics: Exploration in Javanese culture.
Journal of Physics: Conference Series
943
. (
Institute of Physics Publishing
,
2017
).
23.
W. V.
Alangui
,
Stone walls and water flows: Interrogating cultural practice and mathematics Savoirs locaux et autochtones view project
.
Dissertation
(
2010
) (available at http://researchspace.auckland.ac.nz).
24.
D.
Muhtadi
,
Sukirwan
,
Warsito
and
R. C. I.
Prahmana
,
Sundanese ethnomathematics: Mathematical activities in estimating, measuring, and making patterns
.
Journal on Mathematics Education
8
,
185
198
(
2017
).
25.
I.
Risdiyanti
and
R. C. I.
Prahmana
,
The learning trajectory of number pattern learning using Brathayudha war stories and uno stacko
.
Journal on Mathematics Education
11
,
157
166
(
2020
).
26.
V. J.
Katz
and
G. G.
Joseph
,
The crest of the peacock: Non-European roots of mathematics
.
The College Mathematics Journal
23
,
82
(
2010
).
27.
I. G. P.
Suharta
,
I. G. P.
,
Sudiarta
and
I. W. P.
Astawa
,
Ethnomathematics of Balinese traditional houses
.
International Research Journal of Engineering, IT and Scientific Research
3
(
4
),
47
56
(
2017
).
28.
W.
Kurniawan
and
T.
Hidayati
,
Ethnomathematics in Borobudur temple and its relevance in mathematics education
.
Jurnal Pendidikan Progresif
10
,
91
104
(
2020
).
29.
N.
Dwidayati
,
Zaenuri
and
A.
Suyitno
, Ethnomathematics exploration at the Chinese wall and its relation to the concept of geometry.
Journal of Physics: Conference Series
(
Institute of Physics Publishing
,
2019
),
1321
.
30.
C.
Zhang
,
T. T.
Wijaya
,
Y.
Zhou
,
J.
Chen
and
Y.
Ning
, Ethnomathematics values in Temple of Heaven: An imperial sacrificial altar in Beijing, China.
Journal of Physics: Conference Series
(
IOP Publishing Ltd
,
2021
),
2084
.
31.
D. C.
Orey
,
The Ethnomathematics of the Sioux Tipi and Cone
,
239
252
(
2000
).
32.
M.
Yulianti
,
I.
Andari
and
D.
Nurhayati
,
Keraton Ngayogyakarta Hadiningrat: Learning mathematics based on ethnomathematics
, (
Atlantis Press
,
2018
).
33.
J. S.
Rubio
,
The Ethnomathematics of the Kabihug Tribe in Jose Panganiban, Camarines Norte, Philippines
.
Malaysian Journal of Mathematical Sciences
10
,
211
231
(
2016
).
34.
S.
Long
and
Y.
Chik
,
Fundamental applications of mathematics in agriculture and cultural heritage in daily life of Melanau Tellian, Mukah, Sarawak: An ethnomathematics review
.
Malaysian Journal of Social Sciences and Humanities
5
(
11
),
217
227
(
2020
).
35.
M.
Ascher
and
U.
D’Ambrosio
,
Ethnomathematics: A dialogue
.
For the Learning of Mathematics
14
(
2
),
36
43
(
1994
).
36.
U.
D’Ambrosio
,
The program ethnomathematics: Cognitive, anthropological, historic and socio-cultural bases
.
PNA
12
,
229
247
(
2018
).
37.
J. P.
Spradley
,
Metode etnografi
. (
Yogyakarta
:
PT Tiara Wacana
,
1997
).
38.
H. M. Z. Haji
Serudin
,
The Malay Islamic Monarchy: A closer understanding
(
Brunei Darussalam
:
The National Supreme Council of the Malay Islamic Monarchy
,
2013
).
39.
O.
Pedemonte
,
Mathematics for architecture: Some European experiences
.
Nexus Network Journal
3
,
129
135
(
2001
).
40.
N. A.
Salingaros
,
Architecture, patterns, and mathematics
.
Nexus Network Journal
1
,
75
86
(
1999
).
41.
A. G.
Sorguç
,
Teaching mathematics in architecture
.
Nexus Network Journal
7
,
119
124
(
2005
).
42.
I.
Risdiyanti
,
R. C. I.
Prahmana
and
M.
Shahrill
,
The learning trajectory of social arithmetic using an Indonesian traditional game
.
Elementary Education Online
18
,
2094
2108
(
2019
).
43.
Y.
Huang
,
J.
Nong
and
P.
Lai
,
The ethnomathematics of Chinese Tulou building architecture as geometry teaching material in elementary school
.
Journal of Teaching and Learning in Elementary Education
4
,
148
(
2020
).
44.
A. K.
Sari
,
M. T.
Budiarto
and
R.
Ekawati
,
Ethnomathematics study: Cultural values and geometric concepts in the traditional “tanean-lanjang” house in Madura-Indonesia
.
JRAMathEdu (Journal of Research and Advances in Mathematics Education)
7
(
1
),
46
54
(
2022
).
This content is only available via PDF.
You do not currently have access to this content.