The growing population and human activities of the world have significantly increased the demand for energy worldwide. Currently, fossil fuels serve as the main source of energy, however, their use contributes to environmental pollution due to greenhouse gas emissions. Hydrogen, on the other hand, is an energy carrier that can be derived from both renewable and non-renewable sources. In this study, a comprehensive overview of various renewable methods for producing hydrogen, including thermal decomposition, electrical analysis, optical decomposition, vital mechanisms, and thermal and biological chemical processes, is presented. Limitations to the expansion of the hydrogen economy, such as the lack of a clean hydrogen value chain, storage and transfer issues, high production costs, lack of international standards, and investment risks, are also identified. To address these challenges and encourage governments to reduce investment risks, this study offers recommendations based on the latest research in this field. Improving the technical aspects of hydrogen production mechanisms, establishing a clean hydrogen value chain, developing standardized procedures for storage and transfer, and increasing investment in research and development are some of the proposed solutions. These actions can pave the way for a more sustainable and clean energy future.

1.
Osman
,
A.I.
,
Mehta
,
N.
,
Elgarahy
,
A.M.
et al.
Hydrogen production, storage, utilisation and environmental impacts: a review
.
Environ Chem Lett
20
,
153
188
(
2022
).
2.
Lu
,
J.
,
Zahedi
,
A.
,
Yang
,
C.
,
Wang
,
M.
and
Peng
,
B.
(
2013
)
Building the Hydrogen Economy in China: Drivers, Resources and Technologies
.
Renewable and Sustainable Energy Reviews
,
23
,
543
556
.
3.
Pelaez-Samaniego
,
M.R.
,
Riveros-Godoy
,
G.
,
Torres-Contreras
,
S.
,
Garcia-Perez
,
T.
and
Albornoz-Vintimilla
,
E.
(
2014
)
Production and Use of Electrolytic Hydrogen in Ecuador towards a Low Carbon Economy
.
Energy
,
64
,
626
631
.
4.
A.G.
Stern
,
A.G.
Stern
.
A new sustainable hydrogen clean energy paradigm
.
Int J Hydrogen Energy
(
2018
), pp.
1
12
.
5.
M.
Burhan
,
M.W.
Shahzad
,
N.K.
Choon
.
Hydrogen at the Rooftop: compact CPV-hydrogen system to convert sunlight to hydrogen
.
Appl Therm Eng
(
2017
).
6.
J.
Graetz
,
J.J.
Vajo
.
Controlled hydrogen release from metastable hydrides
.
J Alloys Compd
,
743
(
2018
), pp.
691
696
.
7.
T.M.
Ivancic
, et al
Discovery of a new Al species in hydrogen reactions of NaAlH4
.
J Phys Chem Lett
,
1
(
15
) (
2010
), pp.
2412
2416
.
8.
Lee
,
D.-H.
(
2014
).
Development and Environmental Impact of Hydrogen Supply Chain in Japan: Assessment by the CGELCA Method in Japan with a Discussion of the Importance of Biohydrogen
.
International Journal of Hydrogen Energy
,
39
,
19294
19310
.
9.
Thomas
G.
Overview of storage development DOE hydrogen program
.
Annu Rev
;
2000
.
10.
L.Z.
Ouyang
, et al
Excellent hydrolysis performances of Mg3RE hydrides
.
Int J Hydrogen Energy
,
38
(
7
) (
2013
), pp.
2973
2978
.
11.
Gielen
,
D.
,
Boshell
,
F.
,
Saygin
,
D.
,
Bazilian
,
M. D.
,
Wagner
,
N.
, &
Gorini
,
R.
(
2019
).
The role of renewable energy in the global energy transformation
.
Energy strategy reviews
,
24
,
38
50
.
12.
Amoo
,
L.M.
and
Fagbenle
,
R.L.
(
2014
)
An Integrated Impact Assessment of Hydrogen as a Future Energy Carrier in Nigeria’s Transportation, Energy and Power Sectors
.
International Journal of Hydrogen Energy
,
39
,
12433
12409
.
13.
Mirza
,
U.K.
,
Ahmad
,
N.
,
Harijan
,
K.
and
Majeed
,
T.
(
2009
)
A Vision for Hydrogen Economy in Pakistan
.
Renewable and Sustainable Energy Reviews.
3331
3333
,
31
,
14.
Bradhurst
,
D.
,
Heuer
,
P.
,
Stolarski
,
G.
Hydrogen production and storage
;
1981
.
15.
Abad
,
A.V.
,
Dodds
PE
.
Production of hydrogen
, vol.
3
, no.
2015
.
Elsevier
;
2017
.
16.
C.
Acar
,
I.
Dincer
ScienceDirect comparative assessment of hydrogen production methods from renewable and non-renewable sources
.
Int J Hydrogen Energy
,
39
(
1
) (
2013
), pp.
1
12
.
17.
M.
Krumpelt
,
T.R.
Krause
,
J.D.
Carter
,
J.P.
Kopasz
,
S.
Ahmed
.
Fuel processing for fuel cell systems in transportation and portable power applications
.
Catal Today
,
77
(
1-2
) (
2002
), pp.
3
16
.
18.
Stygar
,
M.
and
Brylewski
,
T.
(
2013
)
Towards a Hydrogen Economy in Poland
.
International Journal of Hydrogen Energy.
9-3
,
13
,
19.
Van Rensburg
,
P.
, &
Pretorius
,
I. S.
(
2000
).
Enzymes in winemaking: harnessing natural catalysts for efficient biotransformations
20.
Demirbaş
A.
Biomass resource facilities and biomass conversion processing for fuels and chemicals
.
Energy Convers Manage.
2001
;
42
(
11
):
1357
78
.
21.
Ehsan
,
S.
,
Wahid
,
M.A.
Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development
.
Renew Sustain. Energy Rev.
2016
;
57
:
850
66
.
22.
Liu
,
S.
,
Zhu
,
J.
,
Chen
,
M.
,
Xin
,
W.
,
Yang
,
Z.
,
Kong
,
L.
Hydrogen production via catalytic pyrolysis of biomass in a two-stage fixed bed reactor system
.
Int J Hydrogen Energy.
2014
;
39
(
25
):
13128
35
.
23.
Wang
,
Z.
, et al
Gasification of biomass with oxygen-enriched air in a pilot scale two-stage gasifier
.
Fuel.
2015
;
150
:
386
93
.
24.
Levin
,
D.B.
,
Pitt
,
L.
,
Love
,
M.
Biohydrogen production: prospects and limitations to practical application
.
Int J Hydrogen Energy.
2004
;
29
(
2
):
173
85
.
25.
Bakenne
,
A.
,
Nuttall
,
W.
,
Kazantzis
,
N.
Sankey-Diagram-Based Insights into the Hydrogen Economy of Today
.
Int. J. Hydrogen Energy
2016
,
41
,
7744
7753
.
26.
Safari
,
F.
,
Dincer
,
I.
A Review and Comparative Evaluation of Thermochemical Water Splitting Cycles for Hydrogen Production
.
Energy Convers. Manag.
2020
,
205
,
112182
.
27.
Ni
,
M.
,
Leung
,
M.K.H.
,
Leung
DYC
.
Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC)
.
Int J Hydrogen Energy
2008
;
33
:
2337
54
.
28.
Laguna-Bercero
,
M.A.
Recent advances in high temperature electrolysis using solid oxide fuel cells: A review
.
J Power Sources
2012
;
203
:
4
16
.
29.
Sapountzi
,
F.M.
,
Gracia
,
J.M.
,
Weststrate
,
C.J.
,
Kee
,
J.
,
Fredriksson
,
H.O.A.
,
Niemantsverdriet
JW
Hans. Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas
.
Prog Energy Combust Sci
2017
;
58
:
1
35
. .
30.
Aric`o
,
A.S.
,
Siracusano
,
S.
,
Briguglio
,
N.
,
Baglio
,
V.
,
Di Blasi
,
A.
,
Antonucci
,
V.
Polymer electrolyte membrane water electrolysis: Status of technologies and potential applications in combination with renewable power sources
.
J Appl Electrochem
2013
;
43
:
107
18
.
31.
Zeng
,
K.
,
Zhang
,
D.
Recent progress in alkaline water electrolysis for hydrogen production and applications
.
Prog Energy Combust Sci
2010
;
36
:
307
26
.
32.
Shiva Kumar
,
S.
,
Ramakrishna
,
S.U.B.
,
Krishna
,
S.V.
,
Srilatha
,
K.
,
Devi
,
B.R.
,
Himabindu
,
V.
Synthesis of titanium (IV) oxide composite membrane for hydrogen production through alkaline water electrolysis
.
South African J Chem Eng
2018
;
25
:
54
61
.
33.
Shiva
,
K.S.
,
Ramakrishna
,
S.U.B.
,
Srinivasulu
,
R.D.
,
Bhagawan
,
D.
,
Himabindu
,
V.
Chemical Engineering & Process Techniques Synthesis of Polysulfone and Zirconium Oxide Coated Asbestos Composite Separators for Alkaline Water Electrolysis
2017
.
34.
Yue
,
M.
,
Lambert
,
H.
,
Pahon
,
E.
,
Roche
,
R.
,
Jemei
,
S.
,
Hissel
,
D.
Hydrogen Energy Systems: A Critical Review of Technologies, Applications, Trends and Challenges
.
Renew. Sustain. Energy Rev.
2021
,
146
,
111180
.
35.
Dawood
,
F.
,
Anda
,
M.
,
Shafiullah
,
G.M.
Hydrogen Production for Energy: An Overview
.
Int. J. Hydrogen Energy
2020
,
45
,
3847
3869
.
36.
Najjar
,
Y.S.
Hydrogen Safety: The Road toward Green Technology
.
Int. J. Hydrogen Energy
2013
,
38
,
10716
10728
.
37.
Parra
,
D.
,
Valverde
,
L.
,
Pino
,
F.J.
,
Patel
,
M.K.
A Review on the Role, Cost and Value of Hydrogen Energy Systems for Deep Decarbonisation
.
Renew. Sustain. Energy Rev.
2019
,
101
,
279
294
.
38.
Boudellal
,
M.
(
2018
).
Power-to-gas: Renewable hydrogen economy for the energy transition. de Gruyter
.
39.
Nowotny
,
J.
,
Sorrell
,
C.C.
,
Sheppard
,
L.R.
,
Bak
,
T.
Solar-Hydrogen: Environmentally Safe Fuel for the Future
.
Int. J. Hydrogen Energy
2005
,
30
,
521
544
.
40.
Kovˇc
,
A.
,
Paranos
,
M.
,
Marciuš
,
D.
Hydrogen in Energy Transition: A Review
.
Int. J. Hydrogen Energy
2021
,
46
,
10016
10035
.
41.
Abe
,
J.O.
,
Popoola
,
A.P.I.
,
Ajenifuja
,
E.
,
Popoola
,
O.M.
Hydrogen Energy, Economy and Storage: Review and Recommendation
.
Int. J. Hydrogen Energy
2019
,
44
,
15072
15086
.
42.
M.
Ni
,
D. Y. C.
Leung
,
M. K. H.
Leung
, and
K.
Sumathy
, “
An overview of hydrogen production from biomass
,”
Fuel Processing Technology
, vol.
87
, no.
5
, pp.
461
472
,
2006
.
43.
Liu
,
W.
,
Sun
,
L.
,
Li
,
Z.
,
Fujii
,
M.
,
Geng
,
Y.
,
Dong
,
L.
,
Fujita
,
T.
Trends and Future Challenges in Hydrogen Production and Storage Research
.
Env. Sci. Pollut. Res.
2020
,
27
,
31092
31104
.
44.
N.
Muradov
, “
Emission-free fuel reformers for mobile and portable fuel cell applications
,”
Journal of Power Sources
, vol.
118
, no.
1-2
, pp.
320
324
,
2003
.
45.
Hosseini
,
S.E.
,
Wahid
,
M.A.
Hydrogen Production from Renewable and Sustainable Energy Resources: Promising Green Energy Carrier for Clean Development
.
Renew. Sustain. Energy Rev.
2016
,
57
,
850
866
.
46.
El-Emam
,
R.S.
,
Özcan
,
H.
Comprehensive Review on the Techno-Economics of Sustainable Large-Scale Clean Hydrogen Production
.
J. Clean. Prod.
2019
,
220
,
593
609
.
47.
Okonkwo
,
E.C.
,
Al-Breiki
,
M.
,
Bicer
,
Y.
,
Al-Ansari
,
T.
Sustainable Hydrogen Roadmap: A Holistic Review and Decision-Making Methodology for Production, Utilisation and Exportation Using Qatar as a Case Study
.
Int. J. Hydrogen Energy
2021
,
46
,
35525
35549
.
48.
Lane
,
B.
,
Reed
,
J.
,
Shaffer
,
B.
,
Samuelsen
,
S.
Forecasting Renewable Hydrogen Production Technology Shares under Cost Uncertainty
.
Int. J. Hydrogen Energy
2021
,
46
,
27293
27306
.
49.
A.
Demirbaş
and
G.
Arin
, “
Hydrogen from biomass via pyrolysis: relationships between yield of hydrogen and temperature
,”
Energy Sources
, vol.
26
, no.
11
, pp.
1061
1069
,
2004
.
50.
Nikolaidis
,
P.
,
Poullikkas
,
A.
A Comparative Overview of Hydrogen Production Processes
.
Renew. Sustain. Energy Rev.
2017
,
67
,
597
611
.
51.
Preuster
,
P.
,
Alekseev
,
A.
,
Wasserscheid
,
P.
Hydrogen Storage Technologies for Future Energy Systems
.
Annu. Rev. Chem. Biomol. Eng.
2017
,
8
,
445
471
.
52.
F. G.
Zhagfarov
,
N. A.
Grigor’Eva
, and
A. L.
Lapidus
, “
New catalysts of hydrocarbon pyrolysis
,”
Chemistry and Technology of Fuels and Oils
, vol.
41
, no.
2
, pp.
141
145
,
2005
.
53.
R.
Sakurovs
, “
Interactions between coking coals and plastics during co-pyrolysis
,”
Fuel
, vol.
82
, no. 15-17, pp.
1911
1916
,
2003
.
54.
Baykara
,
S.Z.
Hydrogen: A Brief Overview on Its Sources, Production and Environmental Impact
.
Int. J. Hydrogen Energy
2018
,
43
,
10605
10614
.
55.
L.
Bromberg
,
D. R.
Cohn
,
A.
Rabinovich
, and
N.
Alexeev
, “
Plasma catalytic reforming of methane
,”
International Journal of Hydrogen Energy
, vol.
24
, no.
12
, pp.
1131
1137
,
1999
.
56.
A. J.
Herńandez-Maldonado
and
R. T.
Yang
, “
Desulfurization of liquid fuels by adsorption via p complexation with Cu(I)-Y and Ag-Y zeolites
,”
Industrial & Engineering Chemistry Research
, vol.
42
, no.
1
, pp.
123
129
,
2002
.
57.
L.
Bromberg
,
D. R.
Cohn
, and
A.
Rabinovich
, “
Plasma reformer-fuel cell system for decentralized power applications
,”
International Journal of Hydrogen Energy
, vol.
22
, no.
1
, pp.
83
94
,
1997
.
58.
R. R.
Davda
,
J. W.
Shabaker
,
G. W.
Huber
,
R. D.
Cortright
, and
J. A.
Dumesic
, “
Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts
,”
Applied Catalysis B
, vol.
43
, no.
1
, pp.
13
26
,
2003
.
59.
Kumar
,
S.S.
,
Himabindu
,
V.
Hydrogen Production by PEM Water Electrolysis—A Review
.
Mater. Sci. Energy Technol.
2019
,
2
,
442
454
60.
Nowotny
,
J.
,
Sorrell
,
C.C.
,
Sheppard
,
L.R.
,
Bak
,
T.
Solar-Hydrogen: Environmentally Safe Fuel for the Future
.
Int. J. Hydrogen Energy
2005
,
30
,
521
544
.
61.
gyekum
,
E. B.
,
Nutakor
,
C.
,
Agwa
,
A. M.
, &
Kamel
,
S.
(
2022
).
A critical review of renewable hydrogen production methods: Factors affecting their scale-up and its role in future energy generation
.
Membranes
,
12
(
2
),
173
.
62.
Soltani
,
R.
,
Rosen
,
M.A.
,
Dincer
I.
Assessment of CO2 capture options from various points in steam methane reforming for hydrogen production
.
International journal of hydrogen energy.
2014
Dec 3;
39
(
35
):
20266
75
.
63.
Saxena
,
S.
,
Kumar
,
S.
,
Drozd
,
V.
A modified steam-methane-reformation reaction for hydrogen production
.
international journal of hydrogen energy.
2011
Apr 1;
36
(
7
):
4366
9
.
64.
Acar
,
C.
,
Dincer
,
I.
Comparative assessment of hydrogen production methods from renewable and non-renewable sources
.
International journal of hydrogen energy.
2014
Jan 2;
39
(
1
):
1
2
.
65.
Wang
,
M.
,
Wang
,
G.
,
Sun
,
Z.
,
Zhang
,
Y.
,
Xu
,
D.
Review of renewable energy-based hydrogen production processes for sustainable energy innovation
.
Global Energy Interconnection.
2019
Oct 1;
2
(
5
):
436
43
.
66.
Suleman
,
F.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
Comparative impact assessment study of various hydrogen production methods in terms of emissions
.
International Journal of Hydrogen Energy.
2016
May 25;
41
(
19
):
8364
75
.
67.
Koroneos
,
C.
,
Dompros
,
A.
,
Roumbas
,
G.
Hydrogen production via biomass gasification—A life cycle assessment approach
.
Chemical Engineering and Processing: Process Intensification.
2008
Aug 1;
47
(
8
):
1261
8
.
68.
Iribarren
,
D.
,
Susmozas
,
A.
,
Petrakopoulou
,
F.
,
Dufour
,
J.
Environmental and exergetic evaluation of hydrogen production via lignocellulosic biomass gasification
.
Journal of cleaner production.
2014
Apr 15;
69
:
165
75
.
69.
Nikolaidis
,
P.
,
Poullikkas
,
A.
A comparative overview of hydrogen production processes
.
Renewable and sustainable energy reviews.
2017
Jan 1;
67
:
597
611
.
70.
Bhattacharyya
,
R.
,
Singh
,
K.K.
,
Grover
,
R.B.
,
Bhanja
,
K.
Nuclear hydrogen production for industrial decarbonization: creating the business case for the near term
.
International Journal of Energy Research.
2022
Apr;
46
(
5
):
6929
43
.
71.
Acar
,
C.
,
Dincer
,
I.
Impact assessment and efficiency evaluation of hydrogen production methods
.
International journal of energy research.
2015
Oct 25;
39
(
13
):
1757
68
.
72.
Osman
,
A.I.
,
Mehta
,
N.
,
Elgarahy
,
A.M.
,
Hefny
,
M.
,
Al-Hinai
,
A.
,
Al-Muhtaseb
,
A.A.
,
Rooney
,
D.W.
Hydrogen production, storage, utilisation and environmental impacts: a review
.
Environmental Chemistry Letters.
2022
Feb 1:
1
36
.
73.
Dumortier
,
M.
,
Haussener
,
S.
Design guidelines for concentrated photo-electrochemical water splitting devices based on energy and greenhouse gas yield ratios
.
Energy & Environmental Science.
2015
;
8
(
11
):
3069
82
.
74.
Chun
,
D.
,
Woo
,
C.
,
Seo
,
H.
,
Chung
,
Y.
,
Hong
,
S.
and
Kim
,
J.
(
2014
)
The Role of Hydrogen Energy Development in the Korean Economy: An Input-Output Analysis
.
International Journal of Hydrogen Energy
,
39
,
7627
7633
.
75.
Gim
,
B.
and
Yoon
,
W.L.
(
2012
)
Analysis of the Economy of Scale and Estimation of the Future Hydrogen Production Costs at Onsite Hydrogen Refueling Stations in Korea
.
International Journal of Hydrogen Energy
,
37
,
19138
19145
.
76.
Bae
,
J.H.
and
Cho
,
G.-L.
(
2010
)
A Dynamic General Equilibrium Analysis on Fostering a Hydrogen Economy in Korea
.
Energy Economics
,
32
,
S57
S66
.
77.
Milciuviene
,
S.
,
Milcius
,
D.
and
Praneviciene
,
B.
(
2006
)
Towards Hydrogen Economy in Lithuania
.
International Journal of Hydrogen Energy
,
31
,
861
866
.
78.
Ramírez-Salgado
,
J.
and
Estrada-Martínez
,
A.
(
2004
)
Roadmap towards a Sustainable Hydrogen Economy in Mexico
.
Journal of Power Sources
,
129
,
255
263
.
79.
Leaver
,
J.D.
,
Gillingham
,
K.T.
and
Leaver
,
L.H.
(
2009
)
Assessment of Primary Impacts of a Hydrogen Economy in New Zealand Using UniSyD
.
International Journalof Hydrogen Energy
,
34
,
2855
2865
. .
This content is only available via PDF.
You do not currently have access to this content.