The strong Grabner bases over principal ideal ring R can be calculated efficiently using the factoring method with canonical projections RR/nR, n ≠ 0 and ring isomorphism RR1 × R2. This paper presents a modification of the method by using the F4 algorithm as the semi-core calculation and its comparison with the original method written by Eder and Hofmann, to see that the use of the F4 algorithm as the semi-core calculation is more efficient in the case of calculating strong Grabner bases on polynomial-large polynomial. Experimental data show that the implementation of the F4 algorithm has a much shorter computation time in the large ideal case, but this is inversely proportional to the implementation of the Buchberger algorithm, where in calculating the Grabner basis strong on small ideals, this algorithm runs with shorter computation times.

1.
H.
Hironaka
,
The Annals of Mathematics
79
,
109
(
1964
).
2.
H.
Hironaka
,
The Annals of Mathematics
79
,
205
(
1964
).
3.
H.
Grauert
,
Inventiones Mathematicae
15
,
171
(
1971
).
4.
H.M.
Moller
,
Journal of Symbolic Computation
6
,
345
(
1988
).
5.
A.
Kandri-Rody
and
D.
Kapur
,
Journal of Symbolic Computation
6
,
37
(
1988
).
6.
J.-C.
Faugere
,
Journal of Pure and Applied Algebra
139
,
61
(
1999
).
7.
O.
Wienand
, (
2011
).
8.
D.
Lichtblau
,
Illinois Journal of Mathematics
56
, (
2012
).
9.
C.
Eder
,
G.
Pfister
, and
A.
Popescu
, in
Proceedings of the 2OJ7 ACM on International Symposium on Symbolic and Algebraic Computation
(
ACM
,
New York, NY, USA
,
2017
), pp.
141
148
.
10.
D.
Kapur
and
Y.
Cai
,
Mathematics in Computer Science
2
,
601
(
2009
).
11.
G.H.
Norton
and
A.
Salagean
,
Bulletin of the Australian Mathematical Society
64
,
505
(
2001
).
12.
F.
Pauer
,
Journal of Symbolic Computation
42
,
1003
(
2007
).
13.
A.
Popescu
,
Signature Standard Bases over Principal Ideal Rings
,
Technische Universitat Kaiserslautern
,
2016
.
14.
M.
Francis
and
T.
Verron
, (
2019
).
15.
C.
Eder
and
T.
Hofmann
,
Journal of Symbolic Computation
103
,
1
(
2021
).
16.
A.
Sadiq
,
Central European Journal of Mathematics
8
,
1156
(
2010
).
17.
A.
Storjohann
and
T.
Mulders
, in (
1998
), pp.
139
150
.
18.
J. von zur
Gathen
and
J.
Gerhard
,
Modern Computer Algebra
, 2nd ed. (
Cambridge University Press
,
Cambridge, England
,
2003
).
19.
G.H.
Norton
and
A.
Salagean
,
Electronic Notes in Discrete Mathematics
6
,
240
(
2001
).
20.
A.
Hashemi
and
P.
Alvandi
,
Journal of Algebra and Its Applications
12
,
1350034
(
2013
).
21.
P.
Zimmermann
,
A.
Casamayou
,
N.
Cohen
,
G.
Connan
,
T.
Dumont
,
L.
Fousse
,
F.
Maltey
,
M.
Meulien
,
M.
Mezzarobba
,
C.
Pernet
,
N.M.
Thiery
,
E.
Bray
,
J.
Cremona
,
M.
Forets
,
A.
Ghitza
, and
H.
Thomas
,
Computational Mathematics with SageMath
(
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
,
2018
).
This content is only available via PDF.
You do not currently have access to this content.