How to determine net single premium for a crop insurance product based on two variables that contributed to bivariate distribution of this model is introduced in this paper. In prior, we need to fix the bivariate distribution of maximum daily rainfall and maximum daily temperature in a specific area. The benefit claim model for this crop insurance product requires characteristics of agricultural commodity and univariate model of each variable. The benefit claim model is focused to give benefit claim to policyholder if high and low two variables due to the risk of agricultural commodity. A benchmark value of the model as threshold to pay full benefit claim to policyholder because of fulfilling the high risk is called as the exit. A benchmark value that consists of the partial risk and gives partial benefit payment to policyholder is the trigger. The value of net single premium can be determined by the exit and the trigger. Case study demonstrated the correlation between maximum daily rainfall and temperature data in Dramaga Bogor from September to December during 1984-2021 using Kendall Tau correlation and gives the negative relation. It showed that GEV is the best model of other models chosen to represent the univariate distribution of each variable. Then, Cramer Von Mises is used to select the bivariate distribution. Frank Copula is chosen. Consequently, the net single premium in this research is calculated by IDR 2 178 919/hectare.

1.
A.
Munawir
,
T.
June
,
C.
Kusmana
, and
Y.
Setiawan
, “
SEBAL Model to Estimate Biophysics and Energy Flux Variable : Availability of Evapotranspiration Distribution Using Remote Sensing in Lore Lindu National Park
,”
IOP Conf. Ser. Earth Environ. Sci.
, vol.
950
, no.
1
, p.
012022
, Jan.
2022
, doi: .
2.
BMKG, “
Probabilitic of 24 Hours Rainfall
,”
Badan Meteorologi, Klimatologi, dan Geofisika
, Nov. 04,
2022
.
3.
Rizaldi
Boer
, “
Asuransi iklim sebagai jaminan perlindungan ketahanan petani terhadap perubahan iklim
,”
2012
.
4.
Muna
,
S. U. N.
, “
Penentuan besaran premi produk asuransi pertanian berdasarkan pertimbangan curah hujan
,”
Institut Pertanian Bogor
,
Bogor
,
2017
.
5.
S. U. N.
Muna
,
I. G. P.
Purnaba
, and
B.
Setiawaty
, “
Premium rate determination of crop insurance product based on rainfall index consideration
,”
IOP Conf. Ser. Earth Environ. Sci.
, vol.
299
, no.
1
, p.
012047
, Jul.
2019
, doi: .
6.
Muna
,
S. U. N.
, “
Model asuransi pertanian berdasarkan indeks curah hujan (Studi kasus: komoditas padi di Dramaga Bogor)
,”
Institut Pertanian Bogor
,
Bogor
,
2019
.
7.
M.
Boyd
,
B.
Porth
,
L.
Porth
,
K. Seng
Tan
,
S.
Wang
, and
W.
Zhu
, “
The Design of Weather Index Insurance Using Principal Component Regression and Partial Least Squares Regression: The Case of Forage Crops
,”
North Am. Actuar. J.
, vol.
24
, no.
3
, pp.
355
369
, Jul.
2020
, doi: .
8.
L.
Zhang
and
V. P.
Singh
, “
Bivariate Flood Frequency Analysis Using the Copula Method
,”
J. Hydrol. Eng.
, vol.
11
, no.
2
, pp.
150
164
, Mar.
2006
, doi: .
9.
U.
Cherubini
,
E.
Luciano
, and
W.
Vecchiato
,
Copula Methods in Finance
.
Wiley
,
2004
.
10.
S.
Nurdiati
,
M. K.
Najib
, and
M. Z.
Bayu
, “
Analisis Pembentukan Sebaran Bivariat Berbasis Copula Antara Luas Area Terbakar dan Curah Hujan di Sumatra Bagian Selatan
,”
J. Mat. Integr.
, vol.
18
, no.
2
, p.
217
, Dec.
2022
, doi: .
11.
Joakim
Blom
and
Joakim
Wargclou
, “
Does copula beat linearity?: Comparison of copulas and linear correlation in portfolio optimization
,”
University, Sweden, University
,
Sweden
,
2016
.
12.
S. L.
Ferguson
,
M.
Walpole
, and
M. S. B.
Fall
, “
ACHIEVING STATISTICS SELF-ACTUALIZATION: FACULTY SURVEY ON TEACHING APPLIED SOCIAL STATISTICS
,”
Stat. Educ. Res. J.
, vol.
19
, no.
2
, pp.
57
75
, Jul.
2021
, doi: .
13.
A. F.
Jenkinson
, “
The frequency distribution of the annual maximum (or minimum) values of meteorological elements
,”
Q. J. R. Meteorol. Soc.
, vol.
81
, no.
348
, pp.
158
171
, Apr.
1955
, doi: .
14.
J. R. M.
Hosking
,
J. R.
Wallis
, and
E. F.
Wood
, “
Estimation of the Generalized Extreme-Value Distribution by the Method of Probability-Weighted Moments
,”
Technometrics
, vol.
27
, no.
3
, p.
251
, Aug.
1985
, doi: .
15.
Y.
Cai
and
D.
Hames
, “
Minimum Sample Size Determination for Generalized Extreme Value Distribution
,”
Commun. Stat.-Simul. Comput.
, vol.
40
, no.
1
, pp.
87
98
, Dec.
2010
, doi: .
16.
R. B.
Nelsen
,
An Introduction to Copulas
, 139th ed., vol.
139
.
New York, NY
:
Springer New York
,
1999
.
17.
R. W.
Yanti
,
A.
Fitrianto
, and
M. N.
Aidi
, “
Analisis Spasial Return Period Berbasis Kopula Untuk Data Curah Hujan Ekstrem di Sulawesi Selatan
,”
Institut Pertanian Bogor
,
Bogor
,
2020
.
18.
Sutikno
, “
GAUSSIAN COPULA MARGINAL REGRESSION FOR MODELING EXTREME DATA WITH APPLICATION
,”
J. Math. Stat.
, vol.
10
, no.
2
, pp.
192
200
, Feb.
2014
, doi: .
19.
M. K.
Najib
,
S.
Nurdiati
, and
A.
Sopaheluwakan
, “
Copula in Wildfire Analysis: A Systematic Literature Review
,”
Inpr. Indones. J. Pure Appl. Math.
, vol.
3
, no.
2
, pp.
101
111
, Nov.
2021
, doi: .
20.
C.
Genest
and
B.
Rémillard
, “
Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models
,”
Ann. l’Institut Henri Poincaré, Probab. Stat.
, vol.
44
, no.
6
, Dec.
2008
, doi: .
21.
D.
Berg
, “
Copula goodness-of-fit testing: an overview and power comparison
,”
Eur. J. Financ.
, vol.
15
, no.
7-8
, pp.
675
701
, Dec.
2009
, doi: .
22.
M.
Alam
,
K.
Emura
,
C.
Farnham
, and
J.
Yuan
, “
Best-Fit Probability Distributions and Return Periods for Maximum Monthly Rainfall in Bangladesh
,”
Climate
, vol.
6
, no.
1
, p.
9
, Jan.
2018
, doi: .
23.
Q.
Zhang
,
V. P.
Singh
,
J.
Li
,
F.
Jiang
, and
Y.
Bai
, “
Spatio-temporal variations of precipitation extremes in Xinjiang, China
,”
J. Hydrol.
, vol.
434-435
, pp.
7
18
, Apr.
2012
, doi: .
24.
J.
Zscheischler
,
R.
Orth
, and
S. I.
Seneviratne
, “
Bivariate return periods of temperature and precipitation explain a large fraction of European crop yields
,”
Biogeosciences
, vol.
14
, no.
13
, pp.
3309
3320
, Jul.
2017
, doi: .
25.
Abdillah
Munawir
,
Edi
Rusdiyanto
, and
Nurhasanah
,
Metode Penelitian Aplikasi SOFTWARE MDSRAP Settlements (Analisis Statistik Pengelolaan Sumber daya Alam dan Lingkungan).
, vol. 978-623-480-737-0.
Tangerang Selatan
:
Universitas Terbuka
,
2022
.
This content is only available via PDF.
You do not currently have access to this content.