This study seeks students’ abilities to solve Polya problems involving systems of linear equations with two variables based on their mathematical prowess. Three junior high school students with high, average, and low math aptitudes were chosen as participants. Research data were collected using a written test on the system of linear equations with two variables problem in the form of word questions and interviews. The time triangulation technique is used to establish the credibility of the research data. The findings demonstrated that students with strong mathematical aptitudes could comprehend problems, plan solutions, and carry out problem-solving strategies. Still, they lacked the knowledge necessary to confirm the accuracy of the outcomes, leading students to doubt the proper solution. Students with moderate math abilities can only understand problems, plan solutions and carry out problem-solving methods. Students won’t believe the correct answer since they don’t know how to double-check the results. Meanwhile, students with low math ability can only understand the problem and fail to make problem-solving plans. Students with weak math skills make problem-solving mistakes due to this incompetence. The research’s findings can be used to create learning models that will motivate students to develop their ability to solve mathematical problems, particularly those involving the system of linear equations with two variables material, by emphasizing the accuracy of information conversion into variables, understanding of the fundamental ideas underlying the use of procedures, and the significance of double-checking the outcomes of system of linear equations with two variables problem-solving.

1.
M. K.
Foster
,
Manag. Teach. Review
6
(
2021
).
2.
G.
Polya
,
How to Solve It: A new aspect of mathematical method
(Vol.
85
) (
Princeton University Press
,
Princeton
,
2004
).
3.
M. D.
Merrill
, “Constructivism and instructional design,” in
Constructivism and the technology of instruction
(
Routledge
,
England
,
2013
), pp.
99
114
.
4.
P.
Pathuddin
,
I. K.
Budayasa
and
A.
Lukito
, “
Metacognitive knowledge of a student in planning the solution of limit problems
,” in
Mathematics, Informatics, Science and Education International Conference (MISEIC),
Journal of Physics: Conference Series
1108
, edited by
Y. S.
Rahayu
et al. (
IOP Publishing
,
Bristol
,
2018
), pp.
012032
.
5.
P.
Pathuddin
,
I. K.
Budayasa
and
A.
Lukito
, “
Metacognitive activity of male students: difference field independent-dependent cognitive style
,” in
International Conference on Mathematics: Pure, Applied and Computation
,
Journal of Physics: Conference Series
1218
, edited by
D.
Adzkiya
(
IOP Publishing
,
Bristol
,
2019
), pp.
1
10
.
6.
S.
Hadi
,
H.
Retnawati
,
S.
Munadi
,
E.
Apino
and
N. F.
Wulandari
,
Probl. Educ. 21st Century
76
(
2018
).
7.
S.
Arifin
,
Zulkardi
,
R. I. I.
Putri
and
Y.
Hartono
,
J. Math. Educ.
12
(
2021
).
8.
M.
Marwazi
,
M.
Masrukan
and
N. M. D.
Putra
,
J. Primary Educ.
8
,
127
134
(
2018
).
9.
D. S.
Pambudi
, D.S.,
I. K.
Budayasa
and
A.
Lukito
,
Inter. J. Sci. Res. Manag.
6
(
2018
).
10.
G.
Marchetti
,
Cognit. Process.
19
(
2018
).
11.
D.
Taranto
and
M. T.
Buchanan
,
Discourse Commun. Sustain. Educ.
11
(
2020
).
12.
K.
Lee
,
S. F.
Ng
and
R.
Bull
,
Develop. Psychol.
54
(
2018
).
13.
M.
Maswar
,
Indones. J. Math. Nat. Sci. Educ.
1
(
2019
).
14.
P.
Nesher
,
Addition and subtraction: A Cognitive Perspective
(
Routledge
,
England
,
2020
), pp.
25
38
.
15.
P.
Nesher
,
Analysis of Arithmetic for Mathematics Teaching
(
Routledge
,
England
,
2020
), pp.
189
219
.
16.
J. L.
Krawec
,
J. Learn. Disabil.
47
(
2014
).
17.
N.
Nizaruddin
,
M.
Muhtarom
and
Y. H.
Murtianto
,
Probl. Educ. 21st Century
75
(
2017
).
18.
M.
Putra
and
R.
Novita
,
J. Math. Educ.
6
(
2015
).
19.
T.
Santoso
,
H. L.H.
Nafis
and
M. Y.
Oktama
,
Int. J. Learn. Teach. Educ. Res.
18
(
2019
).
20.
J.
Kirkley
and
R.
Foshay
, “Principles for teaching problem solving,” in
Technical Paper
, (
TRO Learning
,
Edina
,
2003
).
21.
K.
Kenedi
,
Y.
Helsa
,
Y.
,
Ariani
,
M.
Zainil
and
S.
Hendri
,
J. Math. Educ.
10
69
80
(
2019
).
22.
R.
Novita
and
Y.
Hartono
,
Indones. Math. Soc. J. Math. Educ.
3
133
150
(
2012
).
23.
H. G.
Ridder
,
M. B.
Miles
,
H. A.
Michael
and
J.
Saldaña
,
Z. Fur Personalforschung
28
(
2014
).
24.
A.
Ahmadi
and
S.
Widodo
,
Psikologi Belajar
(
Jakarta
,
Rineka Cipta
,
2004
).
25.
J. W.
Santrock
,
Educational psychology
(6th ed.) (
McGraw-Hill
,
New York
,
2018
).
26.
M. V.
Siagian
,
S.
Saragih
, S. and
B.
Sinaga
,
Int. Electron. J. Math. Educ.
14
(
2019
).
27.
D. H.
Clements
and
C.
Joswick
,
Instr. Sci.
46
(
2018
).
28.
M.
Muhtarom
,
N.
Nizaruddin
,
Sutrisno
and
Pathuddin
.
Univers. J. Educ. Res.
8
(
2020
).
29.
N.
Nizaruddin
,
M.
Muhtarom
and
M.S.
Zuhri
,
Univers. J. Educ. Res.
7
(
2019
).
30.
E.
Yayuk
,
P.
Purwanto
,
A.R.
As’Ari
and
S.
Subanji
.
Eur. J. Educ. Res.
9
(
2020
).
31.
S.
Bennu
and
Pathuddin
, “Metacognitive skills of students with high mathematical abilities in solving contextual problems,” in The 2nd International Conference on Physics and Mathematics for Biological Science (2nd ICOPAMBS),
Journal of Physics: Conference Series
1832
, edited by
D.
Wahyuni
(
IOP Publishing
,
Bristol
,
2021
), pp.
012048
.
This content is only available via PDF.
You do not currently have access to this content.