Some cases in environmental studies show that the response variable follows an exponential family, for instance, an inverse Gaussian distribution. Suppose that the positive response variable depends on a set of predictors. We can model it using an inverse Gaussian regression. This study uses the parameter estimation of the inverse Gaussian regression using Maximum Likelihood Estimation (MLE). Since the estimate produced by MLE is not linear, convenient numerical methods are required. The numerical methods used are Fisher scoring and Broyden-Fletcher-Goldfarb-Shanno (BFGS). In this study, we applied inverse Gaussian regression to culinary Micro, Small, and Medium Enterprise resilience data (MSMEs) during extraordinary events. This is an alternative, considering the inverse Gaussian has never been applied outside the survival field. This study aims to obtain an inverse Gaussian regression parameter estimator and factors that influence the resilience of culinary MSMEs from the inverse Gaussian regression application. Fisher scoring and BFGS produce almost the same parameter estimation values. Inverse Gaussian regression’s application produces cost and service time that affect the resilience of culinary MSMEs during extraordinary events.

1.
V.
Seshadri
,
The Inverse Gaussian Distribution Statistical Theory and Applications
(
Springer Science+Business Media
,
Berlin
,
1999
).
2.
J. L.
Folks
and
R. S.
Chhikara
,
J. R. Stat. Soc. Ser. B
40
,
263
289
(
1978
).
3.
K. W.
Tseng
,
Res. Gate.
0
6
(
2017
).
4.
L. J.
Bain
and
M.
Engelhardt
,
Introduction to Probability and Mathematical Statistics
(
Duxbury Press
,
London
,
1992
).
5.
S.
Wang
,
W.
Chen
,
M.
Chen
and
Y.
Zhou
,
Math. Popul. Stud. Int. J. Math. Demogr.
30
,
1
21
(
2021
).
6.
R. S.
Sparks
,
G.
Sutton
,
P.
Toscas
and
J. T.
Ormerod
,
Adv. Decis. Sci.
2011
,
1
8
(
2011
).
7.
J.
Yoon
,
J.
Kim
and
S.
Song
,
Commun. Stat. Appl. Methods
27
,
97
108
(
2020
).
8.
R. E.
Walpole
,
R. H.
Myers
and
S. L.
Myers
,
Probability & Statistics for Engineers & Scientists
(
Pearson Prentice Hall
,
Boston
,
2012
).
9.
P.
Basak
and
N.
Balakrishnan
,
J. Stat. Comput. Simul.
82
,
1055
1072
(
2012
).
10.
S.
Akram
and
Q. U.
Ann
,
Encycl. Appl. Comput. Math.
6
,
1023
1028
(
2015
).
11.
P.
Widyaningsih
,
D. R. Sari
Saputro
and
A. N.
Putri
, "Spread of Ebola disease with susceptible exposed infected isolated recovered (SEIIhR) model," in
Proceeding - International Conference on Mathematics: Education, Theory and Application
(
JPCS: IOP Publishing
,
Bristol
,
2017
), p.
012008
.
12.
S. A.
Purba
,
J. Res. Math. Trends Technol.
3
,
20
24
(
2021
).
13.
J.
Nocedal
and
S. J.
Wright
,
Numerical Optimization
(
Springer Science+Business Media
,
Berlin
,
2006
).
14.
N. N.
Schraudolph
,
J.
Yu
and
S.
Gunter
,
J. Mach. Learn. Res.
2
,
436
443
(
2007
).
15.
W. P.
Saputra
, S. S. T, and
M.
Ari
,
Int. J. Appl. Math. Stat. (IJAMAS)
53
, (
2014
).
16.
P.
Venkataraman
,
Applied Optimization with Matlab Programming
(
John Wiley & Sons, Inc Publication
,
New York
,
2002
).
17.
A.
Etz
,
Adv. Methods Pract. Psychol. Sci.
1
,
60
69
(
2017
).
18.
J.
Akbar
, “
Perjalanan pandemi Covid-19 di Indonesia, lebih dari 100.000 kasus dalam 5 Bulan
,”
Popular Article, Kompas
,
2020
, Accessed: https://www.kompas.com/tren/read/2020/07/28/060100865/perjalanan-pandemi-covid-19-di-indonesia-lebih-dari-100.000-kasus-dalam-5?page=all
19.
S.
Ayuni
et al.,
Analisis Hasil Survei Dampak COVID-19 Terhadap Pelaku Usaha
(
BPS RI
,
Jakarta
,
2020
).
20.
K. S.
Utama
,
Statistik Daerah Kecamatan Ngaliyan 2021
(
BPS
,
Semarang
,
2021
).
21.
M. D. C.
Tongco
,
Ethnobot. Res. Appl.
5
,
147
158
(
2007
).
22.
B.
Hansen
and
R. T.
Hamilton
,
Int. Small Bus. J.
29
,
278
294
(
2011
).
This content is only available via PDF.
You do not currently have access to this content.