This paper discusses model formation which is a modification between multivariate adaptive regression spline (MARS) and generalized Poisson regression (GPR). The maximum likelihood estimation method (MLE) is performed to determine the estimation of model parameters. Furthermore, the model was applied to cases of dengue hemorrhagic fever (DHF) in Java. The results obtained are estimates of model parameters that are not closed form. Therefore, it was solved by the Bernd Hall Hausman (BHHH) numerical method. The results of the application get a very good model on the basis of function = 16, maximum interaction = 3, and minimum observation = 1.
REFERENCES
1.
2.
Hastie
T
, Tibshirani
R
, Friedman
J.
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
. Second. Springer
; 2008
.3.
Diana
R
, Rory
R.
Pemodelan Kasus Covid-19 Menggunakan Model Regresi Nonparametrik
. Semin Nas Off Stat.
2021
;2020
(1
):108
–115
. doi:4.
Qi
X
, Wang
H
, Pan
X
, Chu
J
, Chiam
K.
Prediction of interfaces of geological formations using the multivariate adaptive regression spline method
. Undergr Sp.
2020
;(xxxx). doi:5.
Ampulembang
A.P.
, Otok
B.W.
, Rumiati
A.T.
, Budiasih
. Bi-responses nonparametric regression model using MARS and its properties
. Appl Math Sci.
2015
;9
(29-32
):1417
–1427
. doi:6.
Otok
B.W.
, Putra
R.Y.
, Sutikno
, Yasmirullah
S.D.P.
Bootstrap aggregating multivariate adaptive regression spline for observational studies in diabetes cases
. Syst Rev Pharm.
2020
;11
(8
):406
–413
. doi:7.
Sriningsih
R
, Otok
B.W.
, Sutikno
. Factors affecting the number of dengue fever cases in West Sumatra province using the Multivariate Adaptive Regression Splines (MARS) approach
. J Phys Conf Ser.
2021
;1722
(1
). doi:8.
Craven
P
, Wahba
G.
Smoothing Noisy Data with Spline Functions
. Numer Math.
1979
;(31
):377
–403
.9.
Ismail
N
, Jemain
A.A.
Generalized Poisson Regression: An Alternative for Risk Classification
. J Teknol.
2005
;43
(1
):39
–54
. doi:10.
Cameron
A.C.
, Trivedi
P.K.
Regression Analysis of Count Data
. Cambridge University Press
; 1998
.
This content is only available via PDF.
© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.