When optimizing the directivity and energy characteristics of the antennas with flat reflectors and the leaky-wave antennas, high-speed computational algorithms are required for a reliable analysis of the diffraction of electromagnetic waves on a conducting screen, accounting for the inhomogeneities with the dimensions commensurate with the wavelength. To calculate the diffraction field of an electromagnetic wave with an arbitrary-shaped front on a rectangular groove in the screen, a numerical model has been developed. This model is based on the approximation of the wave front by finite locally flat patches and the use of the authors’ rigorous solution of the problem of locally flat wave diffraction on a conducting screen with a groove. The field above the screen is represented by the Fourier integral, while the field in the groove – by the sum of waveguide modes. The set of functional equations is obtained using the method of partial domains. Through a re-expansion of the modal functions of the field of partial domains in terms of the basis of the adjacent domain, the functional equations are reduced to a set of linear algebraic equations with respect to the complex amplitudes of the waveguide modes of the groove. The implementation of the main computational procedures is described. Based on the analysis of the particular results, the reliability of the developed model is proved. The influence of the quality of the wave front interpolation on the accuracy of the solution is studied. Recommendations on the frequency of a wave-front fragmentation are formulated. The proposed digital algorithm can be used to analyze and synthesize antennas with the flat perforated distributing and radiating systems.

1.
C.
Liu
,
J.
He
,
J.
Zhou
,
J.
Xu
,
K.
Bi
,
J.
Chen
,
L.
Qiao
, and
Y.
Bai
,
Annalen der Physik
533
,
2100149
(
2021
).
2.
A. D.
Lapin
and
M. A.
Mironov
,
Acoustical Physics
49
,
75
80
(
2003
).
3.
S. A.
Manenkov
,
Journal of Communications Technology and Electronics
54
,
515
523
(
2009
).
4.
A. S.
Il’inskii
and
T. N.
Galishnikova
,
Differential Equations
51
,
1211
1218
(
2015
).
5.
A.
Diaz-Rubio
and
S. A.
Tretyakov
,
IEEE Transactions on Antennas and Propagation
69
,
6560
6571
(
2021
).
6.
V. F.
Kravchenko
,
O. S.
Labun’ko
,
A. M.
Lerer
, and
G. P.
Sinyavskii
,
Computational Methods in Modern Radio Physics
(
Fizmatlit
,
Moscow
,
2009
) [in Russian].
7.
M.
Yi
,
Y.
Bae
,
S.
Yoo
, and
J.
So
,
Applied Sciences
11
,
5811
(
2021
).
8.
Y. H.
Cho
,
W. J.
Byun
, and
M. S.
Song
,
IEEE Transactions on Antennas and Propagation
58
,
1788
1792
(
2010
).
9.
M.
Yi
,
W.
Lee
, and
J.
Thus
,
Electronics Letters
50
,
1409
1410
(
2014
).
10.
W.
Lee
,
M.
Yi
,
J.
Thus
, and
Y. J.
Yoon
,
Electronics Letters
51
,
669
671
(
2015
).
11.
Kaung Myat
San
,
A.
Ostankov
,
A.
Rud’
,
A.
Salnikova
,
T.
Demina
, and
S.
Dachian
, “
Special shape directional pattern synthesis based on antenna with a comb reflector
,” in
Frontiers of Signal Processing (ICFSP 2021)
,
6th International Conference Proceedings
(
IEEE
,
Paris
,
2021
), pp.
33
36
.
12.
A. I.
Klimov
,
K. B.
Merkulov
,
A. V.
Ostankov
,
Y. G.
Pasternak
, and
V. I.
Youdin
,
Instruments and Experimental Techniques
42
,
539
542
(
1999
).
13.
P. N.
Melezhik
,
Y. B.
Sidorenko
,
S. A.
Provalov
,
S. D.
Andrenko
, and
S. A.
Shilo
,
Radioelectronics and Communications Systems
53
,
233
240
(
2010
).
14.
A. P.
Yevdokymov
,
Physical Bases of Instrumentation
2
,
108
124
(
2013
) [in Russian].
15.
Y.
Sydorenko
,
S.
Provalov
,
S.
Shylo
, and
D.
Wheeler
,
American Journal of Electromagnetics and Applications
8
,
18
27
(
2020
).
16.
A. V.
Ostankov
,
Bulletin of Voronezh State Technical University
6
,
17
26
(
2010
) [in Russian].
17.
A. V.
Ostankov
,
S. A.
Antipov
, and
K. A.
Razinkin
,
Global Journal of Pure and Applied Mathematics
12
,
3845
3864
(
2016
).
18.
L. N.
Litvinenko
and
S. L.
Prosvirnin
,
Spectral Scattering Operators in Problems of Wave Diffraction by Plane Screens
(
Naukova Dumka
,
Kiev
,
1984
) [in Russian].
19.
A. V.
Gribovskii
and
S. L.
Prosvirnin
,
Journal of Communications Technology and Electronics
42
,
961
966
(
1997
).
20.
A. V.
Malyuskin
,
D. N.
Goryushko
,
A.
Shmat’ko
, and
S. N.
Shulga
, “
Scattering of a wave beam by inhomogeneous anisotropic chiral layer
,” in
Mathematical Methods in Electromagnetic Theory (MMET 2002), International Conference Proceedings 2
(
IEEE
,
Kiev
,
2002
), pp.
566
568
.
21.
V. R.
Tuz
and
V. I.
Fesenko
,
Springer Series in Optical Sciences
199
,
99
113
(
2016
).
22.
A. B.
Borzov
,
A. V.
Sokolov
, and
V. B.
Suchkov
,
Journal of Radio Electronics
4
,
3
(
2004
) [in Russian].
23.
A. B.
Borzov
,
K. L.
Likhoedenko
,
I. V.
Muratov
,
G. L.
Pavlov
, and
V. B.
Suchkov
,
Herald of the Bauman Moscow State Technical University
.
Series Mechanical Engineering
S
,
150
159
(
2010
) [in Russian].
24.
A. V.
Ostankov
,
Bulletin of Voronezh State Technical University
10
,
86
88
(
2014
) [in Russian].
25.
A. F.
Peterson
,
S. L.
Ray
, and
R.
Mittra
,
Computational Methods for Electromagnetics
(
Wiley-IEEE Press
,
New York
,
1997
).
26.
N. L.
Aleksandrov
and
Y. P.
Vinichenko
,
Radiotekhnika i Elektronika
36
,
1939
1945
(
1991
) [in Russian].
27.
A. V.
Ostankov
,
Antennas
9
(
160
),
44
53
(
2010
) [in Russian].
28.
A. V.
Ostankov
,
Modern Science: Actual Problems of Theory and Practice
.
Series “Natural & Technical Sciences”
11-12
,
3
11
(
2014
) [in Russian].
29.
V. N.
Kochin
,
S. L.
Prosvirnin
, and
D. G.
Seleznev
,
Izvestiya Vysshikh Uchebnykh Zavedenij
.
Radiofizika
24
,
1146
1151
(
1981
) [in Russian].
30.
A. V.
Ostankov
,
Vestnik of Voronezh Institute of the Russian Federal Penitentiary Service
1
,
27
32
(
2016
) [in Russian].
This content is only available via PDF.
You do not currently have access to this content.