Fused Deposition Modelling (FDM), also known as Fused Filament Fabrication (FFF), can be called a primary additive manufacturing technology used for rapid prototyping of items with complex geometry. However, these techniques have limitations, including poor dimensional precision and insufficient mechanical characteristics. Several studies have shown that such process factors significantly impact the manufactured product quality. Considering this, a thorough evaluation of the impact of process variables such as, nozzle diameter, extrusion temperature, layer thickness, infill density, raster angle, build orientation and infill patterns on mechanical characteristics was conducted. The literature review indicates layer thickness is one of the crucial factors compared to other parameters. Studies also reveal that the mechanical characteristics and the quality of 3D printed parts have a significant impact due to adjustments in FDM process settings. It is also found that achieving an ideal combination of process parameters is quite challenging. Therefore, in this study, an evaluation of the impact of pre-processing of 3D printed parts on part strength enhancement is also included.

1.
Gibson
,
I.
,
Rosen
,
D.
,
Stucker
,
B.
, Direct digital manufacturing. In
Additive Manufacturing Technologies
,
Springer
:
New York, NY, SA
,
2015
, pp.
375
397
.
2.
Mueller
,
B.
,
Additive manufacturing technologies–Rapid prototyping to direct digital manufacturing
,
Assembly Automation
,
2012
,
32
3.
Li
,
H.
,
Wang
,
T.
,
Sun
,
J.
,
Yu
,
Z.
,
The effect of process parameters in fused deposition modelling on bonding degree and mechanical properties
,
Rapid Prototyping. J.
,
2018
,
24
,
80
92
.
4.
Kai
,
C.C.
,
Three-dimensional rapid prototyping technologies and key development areas
,
Computer Control Eng. J.
,
1994
,
5
,
200
206
.
5.
Turner
,
B.N.
,
Strong
,
R.
,
Gold
,
S.A.
,
A review of melt extrusion additive manufacturing processes: I
,
Process design and modelling Rapid Prototyping, J.
,
2014
,
20
,
192
204
.
6.
Turner
,
B.N.
,
Gold
,
S.A.
,
A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness
,
Rapid Prototyping, J.
,
2015
,
21
,
250
261
.
7.
Popescu
,
D.
,
Zapciu
,
A.
,
Amza
,
C.
,
Baciu
,
F.
,
Marinescu
,
R.
,
FDM process parameters influence over the mechanical properties of polymer specimens: A review
,
Polym. Test.
,
2018
,
69
,
157
166
.
8.
Vyavahare
,
S.
,
Teraiya
,
S.
,
Panghal
,
D.
,
Kumar
,
S.
,
Fused deposition modelling: A review
,
Rapid Prototyping, J.
,
2020
,
26
,
176
201
.
9.
Cuan-Urquizo
,
E.
,
Barocio
,
E.
,
Tejada-Ortigoza
,
V.
,
Pipes
,
R.B.
,
Rodriguez
,
C.A.
,
Roman-Flores
,
A.
,
Characterization of the mechanical properties of FFF structures and materials: A review on the experimental, computational and theoretical approaches
,
Materials
,
2019
,
12
,
895
.
10.
Coogan
,
T.J.
,
Kazmer
,
D.O.
,
Healing simulation for bond strength prediction of FDM
.
Rapid Prototyping J.
,
2017
,
23
,
551
561
.
11.
Mohamed
,
O.A.
,
Masood
,
S.H.
,
Bhowmik
,
J.L.
,
Optimization of fused deposition modelling process parameters: A review of current research and future prospects
,
Adv. Manuf.
,
2015
,
3
,
42
53
.
12.
Chohan
,
J.S.
,
Singh
,
R.
,
Boparai
,
K.S.
,
Penna
,
R.
,
Fraternali
,
F.
,
Dimensional accuracy analysis of coupled fused deposition modelling and vapour smoothing operations for biomedical applications
,
Compos. Part B Eng.
,
2017
,
117
,
138
149
.
13.
Sood
,
A.K.
,
Ohdar
,
R.K.
,
Mahapatra
,
S.S.
,
Parametric appraisal of mechanical property of fused deposition modelling processed parts
,
Mater. Des.
,
2010
,
31
,
287
295
.
14.
Parandoush
,
P.
,
Lin
,
D.
,
A review on additive manufacturing of polymer-fibre composites
,
Compos. Struct.
,
2017
,
182
,
36
53
.
15.
Wang
,
X.
,
Jiang
,
M.
,
Zhou
,
Z.
,
Gou
,
J.
,
Hui
,
D.
,
3D printing of polymer matrix composites: A review and prospective
,
Compos. Part B Eng.
,
2017
,
110
,
442
458
.
16.
Frenkel
,
J.
Viscous flow of crystalline bodies under the action of surface tension
.
J. Phys.
1945
,
9
,
385
.
17.
Bellehumeur
,
C.
,
Li
,
L.
,
Sun
,
Q.
,
Gu
,
P.
,
Modelling of bond formation between polymer filaments in the fused deposition modelling process
,
J. Manuf. Process.
,
2004
,
6
,
170
178
.
18.
Sun
,
Q.
,
Rizvi
,
G.
,
Bellehumeur
,
C.
,
Gu
,
P.
,
Effect of processing conditions on the bonding quality of FDM polymer filaments
,
Rapid Prototyping J.
,
2008
,
14
,
72
80
19.
Rodríguez
,
J.F.
,
Thomas
,
J.P.
,
Renaud
,
J.E.
,
Mechanical behaviour of acrylonitrile butadiene styrene (ABS) fused deposition materials: Experimental investigation
,
Rapid Prototyping. J.
,
2001
,
7
,
148
158
.
20.
Bellini
,
A.
,
Guçeri
,
S.
,
Mechanical characterization of parts fabricated using fused deposition modelling
,
Rapid Prototyping J.
2003
,
9
,
252
264
.
21.
Gurrala
,
P.K.
,
Regalla
,
S.P.
,
Part strength evolution with bonding between filaments in fused deposition modelling
,
Virtual Phys. Prototyping
,
2014
,
9
,
141
149
.
22.
Pokluda
,
O.
,
Bellehumeur
,
C.T.
,
Vlachopoulos
,
J.
,
Modification of Frenkel’s model for sintering
,
AICHE J.
1997
,
43
,
3253
3256
.
23.
Yin
,
J.
,
Lu
,
C.
,
Fu
,
J.
,
Huang
,
Y.
,
Zheng
,
Y.
,
Interfacial bonding during multi-material fused deposition modelling (FDM) process due to inter-molecular diffusion
,
Mater. Des.
,
2018
,
150
,
104
112
.
24.
Campbell
,
I.
,
Diegel
,
O.
,
Kowen
,
J.
,
Wohlers
,
T.
,
Wohlers Report 2018: 3D Printing and Additive Manufacturing State of the Industry: Annual Worldwide Progress Report
,
Wohlers Associates: Fort Collins
,
CO, USA
,
2018
.
25.
Najmon
,
J.C.
,
Raeisi
,
S.
,
Tovar
,
A.
, Review of additive manufacturing technologies and applications in the aerospace industry,
Additive Manufacturing for the Aerospace Industry
,
Elsevier
:
Amsterdam, The Netherlands
,
2019
, pp.
7
31
.
26.
Negis
,
E.
,
A short history and applications of 3D printing technologies in Turkey
,
Proceedings of the US-TURKEY Workshop on Rapid Technologies
,
Istanbul, Turkey
, 24–25 September
2009
.
27.
Bayar
,
M.S.
,
Aziz
,
Z.
,
Rapid prototyping and its role in supporting architectural design process
,
J. Archit. Eng.
2018
,
24
,
05018003
.
28.
Klippstein
,
H.
,
Diaz De Cerio Sanchez
,
A.
,
Hassanin
,
H.
,
Zweiri
,
Y.
,
Seneviratne
,
L.
,
Fused deposition modelling for unmanned aerial vehicles (UAVs): A review
,
Adv. Eng. Mater.
,
2018
,
20
,
1700552
.
29.
Hiemenz
,
J.
,
Additive Manufacturing Trends in Aerospace
;
White Paper Stratasys: Eden Prairie, MN, USA
,
2014
; pp.
1
11
.
30.
Bourell
,
D.
,
Stucker
,
B.
,
Ilardo
,
R.
,
Williams
,
C.B.
,
Design and manufacture of a Formula SAE intake system using fused deposition modelling and fibre-reinforced composite materials
,
Rapid Prototyping. J.
,
2010
,
16
,
174
179
.
31.
Okwuosa
,
T.C.
,
Stefaniak
,
D.
,
Arafat
,
B.
,
Isreb
,
A.
,
Wan
,
K.W.
,
Alhnan
,
M.A.
,
A lower temperature FDM 3D printing for the manufacture of patient-specific immediate release tablets
,
Pharm. Res.
,
2016
,
33
,
2704
2712
.
32.
Melgoza
,
E.L.
,
Vallicrosa
,
G.
,
Serenó
,
L.
,
Ciurana
,
J.
,
Rodríguez
,
C.A.
,
Rapid tooling using 3D printing system [for manufacturing of customized tracheal stent
,
Rapid Prototyp. J.
,
2014
,
20
,
2
12
.
33.
Domanski
,
J.
,
Skalski
,
K.
,
Grygoruk
,
R.
,
Mróz
,
A.
,
Rapid prototyping in the intervertebral implant design process
,
Rapid Prototyping J.
,
2015
,
21
,
735
746
.
34.
Yeong
,
W.Y.
,
Chua
,
C.K.
,
Leong
,
K.F.
,
Chandrasekaran
,
M.
,
Rapid prototyping in tissue engineering: Challenges and potential
,
Trends in Biotechnol.
,
2004
,
22
,
643
652
.
35.
Peltola
,
S.M.
,
Melchels
,
F.P.
,
Grijpma
,
D.W.
,
Kellomäki
,
M.
,
A review of rapid prototyping techniques for tissue engineering purposes
,
Ann. Med.
,
2008
,
40
,
268
280
.
36.
Kim
,
B.S.
,
Mooney
,
D.J.
,
Development of biocompatible synthetic extracellular matrices for tissue engineering
,
Trends in Biotechnol.
,
1998
,
16
,
224
230
.
37.
Hutmacher
,
D.W.
,
Sittinger
,
M.
,
Risbud
,
M.V.
,
Scaffold-based tissue engineering: Rationale for computer-aided design and solid free-form fabrication systems
,
Trends in Biotechnol.
,
2004
,
22
,
354
362
.
38.
Korpela
,
J.
,
Kokkari
,
A.
,
Korhonen
,
H.
,
Malin
,
M.
,
Narhi
,
T.
,
Seppala
,
J.
,
Biodegradable and bioactive porous scaffold structures prepared using fused deposition modelling
,
J. Biomed. Mater. Res. Part B Appl. Biomater.
,
2013
,
101
,
610
619
.
39.
Lam
,
C.X.F.
,
Mo
,
X.
,
Teoh
,
S.H.
,
Hutmacher
,
D.
,
Scaffold development using 3D printing with a starch-based polymer
,
Mater. Sci. Eng.
,
2002
,
20
,
49
56
.
40.
Lee
,
C.
,
Chua
,
C.
,
Cheah
,
C.
,
Tan
,
L.
,
Feng
,
C.
,
Rapid investment casting: Direct and indirect approaches via fused deposition modelling
,
Int. J. Adv. Manuf. Technol.
,
2004
,
23
,
93
101
.
41.
Petropolis
,
C.
,
Kozan
,
D.
,
Sigurdson
,
L.
,
Accuracy of medical models made by consumer-grade fused deposition modelling printers
,
Plast. Surg.
,
2015
,
23
,
91
94
.
42.
Bourell
,
D.
,
Stucker
,
B.
,
Espalin
,
D.
,
Arcaute
,
K.
,
Rodriguez
,
D.
,
Medina
,
F.
,
Posner
,
M.
,
Wicker
,
R.
,
Fused deposition modelling of patient-specific polymethyl methacrylate implants
,
Rapid Prototyping. J.
,
2010
,
16
,
164
173
.
43.
Van Noort
,
R.
The future of dental devices is digital
,
Dent. Mater.
,
2012
,
28
,
3
12
.
44.
Xu
,
N.
,
Ye
,
X.
,
Wei
,
D.
,
Zhong
,
J.
,
Chen
,
Y.
,
Xu
,
G.
,
He
,
D.
,
3D artificial bones for bone repair prepared by computed tomography guided fused deposition modelling for bone repair
,
ACS Appl. Mater. Interfaces
,
2014
,
6
,
14952
14963
.
45.
Šljivić
,
M.
,
Stanojević
,
M.
,
Ðurd¯ević
,
D.
,
Grujović
,
N.
,
Pavlovic
,
A.
,
Implementation of FEM and rapid prototyping in maxillofacial surgery
,
FME Trans.
,
2016
,
44
,
422
429
.
46.
Melocchi
,
A.
,
Parietti
,
F.
,
Maroni
,
A.
,
Foppoli
,
A.
,
Gazzaniga
,
A.
,
Zema
,
L.
,
Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modelling
,
Int. J. Pharm.
,
2016
,
509
,
255
263
.
47.
Zhang
,
B.
,
Seong
,
B.
,
Nguyen
,
V.
,
Byun
,
D.
,
3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modelling techniques
,
J. Micromech. Microeng
,
2016
,
26
,
025015
.
48.
Soriano-Heras
,
E.
,
Blaya-Haro
,
F.
,
Molino
,
C.
,
de Agustín del Burgo
,
J.M.
,
Rapid prototyping prosthetic hand acting by a low-cost shape-memory-alloy actuator
,
J. Artif. Organs
,
2018
,
21
,
238
246
.
49.
Juneja
,
M.
,
Thakur
,
N.
,
Kumar
,
D.
,
Gupta
,
A.
,
Bajwa
,
B.
,
Jindal
,
P.
,
Accuracy in dental surgical guide fabrication using different 3-D printing techniques
.
Addit. Manuf.
2018
,
22
,
243
255
.
50.
Chougule
,
V.N.
,
Mulay
,
A.V.
,
Ahuja
,
B.B.
,
Methodologies for development of patient specific bone models from human body CT scans
,
J. Inst. Eng. Ser.
,
2018
,
99
,
413
418
.
51.
Colpani
,
A.
,
Fiorentino
,
A.
,
Ceretti
,
E.
, In 3D printing for health & wealth: Fabrication of custom-made medical devices through additive manufacturing,
In AIP Conference Proceedings
;
AIP Publishing LLC
:
Melville, NY, USA
,
2018
.
52.
Corcione
,
C.E.
,
Palumbo
,
E.
,
Masciullo
,
A.
,
Montagna
,
F.
,
Torricelli
,
M.C.
,
Fused Deposition Modeling (FDM): An innovative technique aimed at reusing Lecce stone waste for industrial design and building applications
,
Constr. Build. Mater.
,
2018
,
158
,
276
284
.
53.
García-García
,
R.
,
González-Palacios
,
M.A.
,
Method for the geometric modelling and rapid prototyping of involute bevel gears
,
Int. J. Adv. Manuf. Technol.
2018
,
98
,
645
656
.
54.
Pei
,
E.
,
Shen
,
J.
,
Watling
,
J.
,
Direct 3D printing of polymers onto textiles: Experimental studies and applications
.
Rapid Prototyping J.
,
2015
,
21
,
556
571
.
55.
Durgun
,
I.
,
Ertan
,
R.
,
Experimental investigation of FDM process for improvement of mechanical properties and production cost
,
Rapid Prototyping J.
,
2014
,
20
,
228
235
.
56.
Brooks
,
H.
,
Lupeanu
,
M.
,
Abram
,
T.
,
Production of personalized lithophane lighting products using AM
.
In DAAAM International Scientific Book
;
DAAAM International
:
Vienna, Austria
,
2012
; Volume
11
.
57.
Monzon
,
M.D.
,
Diaz
,
N.
,
Benitez
,
A.
,
Marrero
,
M.
,
Hernandez
,
P.
Advantages of fused deposition modelling for making electrically conductive plastic patterns
,
Proceedings of the 2010 International Conference on Manufacturing Automation
,
Hong Kong, China
,
13–15 December 2010
;
IEEE
:
Piscataway, NJ, USA
,
2010
.
58.
Diegel
,
O.
,
Singamneni
,
S.
,
Huang
,
B.
,
Gibson
,
I.
,
Curved layer fused deposition modelling in conductive polymer additive manufacturing
,
Advanced Materials Research; Trans Tech Publications: Zurich, Switzerland
,
2011
.
59.
Diegel
,
O.
,
Singamneni
,
S.
,
Huang
,
B.
,
Gibson
,
I.
, Getting rid of the wires: Curved layer fused deposition modelling in conductive polymer additive manufacturing,
Key Engineering Materials
,
Trans Tech Publications
:
Zurich, Switzerland
,
2011
; pp.
662
667
.
60.
Jatti
,
V.S.
,
Jatti
,
S.V.
,
Patel
,
A.P.
,
A Study On Effect Of Fused Deposition Modelling Process Parameters On Mechanical Properties
,
Int. J. Sci. Technol. Res.
,
2019
,
8
,
689
693
.
61.
Rodríguez-Panes
,
A.
,
Claver
,
J.
,
Camacho
,
A.M.
,
The influence of manufacturing parameters on the mechanical behaviour of PLA and ABS pieces manufactured by FDM: A comparative analysis
,
Materials
,
2018
,
11
,
1333
.
62.
Ramkumar
,
P.
Investigation on the effect of process parameters on impact strength of fused deposition modelling specimens
,
In IOP Conference Series: Materials Science and Engineering
;
IOP Publishing
:
Bristol, UK
,
2019
.
63.
Radhwan
,
H.
,
Shayfull
,
Z.
,
Abdellah
,
A.E.H.
,
Irfan
,
A.
,
Kamarudin
,
K.
, Optimization parameter effects on the strength of 3D-printing process using Taguchi method, In
AIP Conference Proceedings
;
AIP Publishing LLC
:
Melville, NY, USA
,
2019
, p.
020154
.
64.
Vicente
,
C.M.
,
Martins
,
T.S.
,
Leite
,
M.
,
Ribeiro
,
A.
,
Reis
,
L.
,
Influence of fused deposition modelling parameters on the mechanical properties of ABS parts
,
Polym. Adv. Technol.
,
2020
,
31
,
501
507
.
65.
Pei
,
E.
,
Melenka
,
G.W.
,
Schofield
,
J.S.
,
Dawson
,
M.R.
,
Carey
,
J.P.
,
Evaluation of dimensional accuracy and material properties of the MakerBot 3D desktop printer
,
Rapid Prototyping J.
,
2015
,
21
,
618
627
.
66.
Qattawi
,
A.
,
Alrawi
,
B.
,
Guzman
,
A.
,
Experimental optimization of fused deposition modelling processing parameters: A design-for-manufacturing approach
.
Procedia Manuf.
,
2017
,
10
,
791
803
.
67.
Akhoundi
,
B.
,
Behravesh
,
A.
,
Effect of filling pattern on the tensile and flexural mechanical properties of FDM 3D printed products
,
Exp. Mech.
,
2019
,
59
,
883
897
.
68.
Aloyaydi
,
B.
,
Sivasankaran
,
S.
,
Mustafa
,
A.
,
Investigation of infill-patterns on mechanical response of 3D printed poly-lactic-acid
.
Polym. Test.
,
2020
,
106557
.
69.
Chadha
,
A.
,
Haq
,
M.I.U.
,
Raina
,
A.
,
Singh
,
R.R.
,
Penumarti
,
N.B.
,
Bishnoi
,
M.S.
,
Effect of fused deposition modelling process parameters on mechanical properties of 3D printed parts
.
World J. Eng.
,
2019
,
16
,
550
559
.
70.
Wool
,
R.
,
O’connor
,
K.
,
A theory crack healing in polymers
.,
J. Appl. Phys.
,
1981
,
52
,
5953
5963
.
71.
Ćwikła
,
G.
,
Grabowik
,
C.
,
Kalinowski
,
K.
,
Paprocka
,
I.
,
Ociepka
,
P.
,
The Influence of Printing Parameters on Selected Mechanical Properties of FDM/FFF 3D-Printed Parts
,
IOP Conf. Ser. Mater. Sci. Eng.
2017
,
227
,
012033
.
72.
Coogan
,
T.J.
,
Kazmer
,
D.O.
,
Bond and part strength in fused deposition modelling
,
Rapid Prototyping J.
,
2017
,
23
,
414
422
.
73.
Zhou
,
X.
,
Hsieh
,
S.J.
,
Sun
,
Y.
,
Experimental and numerical investigation of the thermal behaviour of polylactic acid during the fused deposition process
,
Virtual Phys. Prototyping J.
,
2017
,
12
,
221
233
.
74.
Benwood
,
C.
,
Anstey
,
A.
,
Andrzejewski
,
J.
,
Misra
,
M.
,
Mohanty
,
A.K.
,
Improving the impact strength and heat resistance of 3D printed models: Structure, property, and processing correlation ships during fused deposition modelling (FDM) of poly (lactic acid
),
ACS Omega
,
2018
,
3
,
4400
4411
.
75.
Ouballouch
,
A.
,
Ettaqi
,
S.
,
Bouayad
,
A.
,
Sallaou
,
M.
,
Lasri
,
L.
,
Evaluation of dimensional accuracy and mechanical behaviour of 3D printed reinforced polyamide parts
,
Procedia Struct. Integrit.
,
2019
,
19
,
433
441
.
76.
Ning
,
F.
,
Cong
,
W.
,
Hu
,
Y.
,
Wang
,
H.
,
Additive manufacturing of carbon fibre-reinforced plastic composites using fused deposition modelling: Effects of process parameters on tensile properties
,
J. Compos. Mater.
,
2017
,
51
,
451
462
.
77.
Guessasma
,
S.
,
Belhabib
,
S.
,
Nouri
,
H.
,
Thermal cycling, microstructure and tensile performance of pla-pha polymer printed using fused deposition modelling technique
,
Rapid Prototyping J.
,
2019
,
26
,
122
133
.
78.
Kuznetsov
,
V.E.
,
Solonin
,
A.N.
,
Urzhumtsev
,
O.D.
,
Schilling
,
R.
,
Tavitov
,
A.G.
,
Strength of PLA components fabricated with fused deposition technology using a desktop 3D printer as a function of geometrical parameters of the process
,
Polymers
,
2018
,
10
,
313
.
79.
Triyono
,
J.
,
Sukanto
,
H.
,
Saputra
,
R.M.
,
Smaradhana
,
D.F.
,
The effect of nozzle hole diameter of 3D printing on porosity and tensile strength parts using polylactic acid material
,
Open Eng.
,
2020
,
10
,
762
768
.
80.
Yang
,
L.
,
Li
,
S.
,
Li
,
Y.
,
Yang
,
M.
,
Yuan
,
Q.
,
Experimental investigations for optimizing the extrusion parameters on FDM PLA printed parts
,
J. Mater. Eng. Perform.
2019
,
28
,
169
182
.
81.
Nabipour
,
M.
,
Akhoundi
,
B.
,
An experimental study of FDM parameters effects on tensile strength, density, and production time of ABS/Cu composites
,
J. Elastomers Plast.
,
2020
.
82.
Garzon-Hernandez
,
S.
,
Garcia-Gonzalez
,
D.
,
Jérusalem
,
A.
,
Arias
,
A.
,
Design of FDM 3D printed polymers: An experimental modelling methodology for the prediction of mechanical properties
,
Mater. Des.
,
2020
,
188
,
108414
.
83.
Sharma
,
M.
,
Sharma
,
V.
,
Kala
,
P.
, Optimization of process variables to improve the mechanical properties of FDM structures, In
Journal of Physics Conference Series
,
IOP Publishing
:
Bristol, UK
,
2019
, p.
012061
.
84.
Ouballouch
,
A.
,
Lasri
,
L.
,
Ouahmane
,
I.
,
Sallaou
,
M.
,
Ettaqi
,
S.
,
Optimization of PLA parts manufactured by the fused deposition modelling technology
, In
Proceedings of the 2018 IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD
),
Marrakech, Morocco
, 21–23 November
2018
;
IEEE
:
Piscataway, NJ, USA
,
2018
, pp.
288
292
.
85.
Samykano
,
M.
,
Selvamani
,
S.
,
Kadirgama
,
K.
,
Ngui
,
W.
,
Kanagaraj
,
G.
,
Sudhakar
,
K.
,
Mechanical property of FDM printed ABS: Influence of printing parameters
,
Int. J. Adv. Manuf. Technol.
,
2019
,
102
,
2779
2796
.
86.
Huynh
,
L.P.
,
Nguyen
,
H.A.
,
Nguyen
,
H.Q.
,
Phan
,
L.K.
,
Thanh
,
T.T.
,
Effect of process parameters on mechanical strength of fabricated parts using the fused deposition modelling method
,
J. Korean Soc. Precis. Eng.
,
2019
,
36
.
87.
Wang
,
C.C.
,
Lin
,
T.W.
,
Hu
,
S.S.
,
Optimizing the rapid prototyping process by integrating the Taguchi method with the Gray relational analysis
,
Rapid Prototyping J.
,
2007
,
13
,
304
315
.
88.
Nidagundi
,
V.B.
,
Keshavamurthy
,
R.
,
Prakash
,
C.
,
Studies on parametric optimization for fused deposition modelling process
,
Mater. Today Proc.
,
2015
,
2
,
1691
1699
.
89.
Panda
,
S.K.
,
Padhee
,
S.
,
Anoop Kumar
,
S.
,
Mahapatra
,
S.S.
,
Optimization of fused deposition modelling (FDM) process parameters using bacterial foraging technique
,
Intell. Inf. Manag.
2009
,
1
,
89
.
90.
Ziemian
,
S.
,
Okwara
,
M.
,
Ziemian
,
C.W.
,
Tensile and fatigue behaviour of layered acrylonitrile butadiene styrene
,
Rapid Prototyping J.
,
2015
,
21
,
270
278
.
91.
Liu
,
X.
,
Zhang
,
M.
,
Li
,
S.
,
Si
,
L.
,
Peng
,
J.
,
Hu
,
Y.
,
Mechanical property parametric appraisal of fused deposition modelling parts based on the gray Taguchi method
,
Int. J. Adv. Manuf. Technol.
,
2017
,
89
,
2387
2397
.
92.
Zhou
,
Y.G.
,
Su
,
B.
,
Turng
,
L.S.
,
Deposition-induced effects of isotactic polypropylene and polycarbonate composites during fused deposition modelling
.
Rapid Prototyping J.
,
2017
,
23
,
869
880
.
93.
Raju
,
M.
,
Gupta
,
M.K.
,
Bhanot
,
N.
,
Sharma
,
V.S.
,
A hybrid PSO–BFO evolutionary algorithm for optimization of fused deposition modelling process parameters
,
J. Intell. Manuf.
,
2019
,
30
,
2743
2758
.
94.
Vishwas
,
M.
,
Basavaraj
,
C.
,
Vinyas
,
M.
,
Experimental investigation using Taguchi method to optimize process parameters of fused deposition Modelling for ABS and nylon materials
.
Mater. Today Proc.
2018
,
5
,
7106
7114
.
95.
Raut
,
S.
,
Jatti
,
V.S.
,
Khedkar
,
N.K.
,
Singh
,
T.
Investigation of the effect of built orientation on mechanical properties and total cost of FDM parts
.
Procedia Mater. Sci.
2014
,
6
,
1625
1630
.
96.
Hernandez
,
R.
Slaughter
,
D.
Whaley
, D.,
Tate
,
J.
,
Asiabanpour
,
B.
,
Analyzing the tensile, compressive, and flexural properties of 3D printed ABS P430 plastic based on printing orientation using fused deposition modelling
, In
Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX, USA
, 8–10 August
2016
; pp.
939
950
.
97.
Abdelrhman
,
A.M.
,
Gan
,
W.W.
,
Kurniawan
,
D.
, Effect of part orientation on dimensional accuracy, part strength, and surface quality of three dimensional printed part. In
IOP Conference Series: Materials Science and Engineering
;
IOP Publishing
:
Bristol, UK
,
2019
; p.
012048
.
98.
Kishore
,
V.
,
Ajinjeru
,
C.
,
Nycz
,
A.
,
Post
,
B.
,
Lindahl
,
J.
,
Kunc
,
V.
,
Duty
,
C.
Infrared preheating to improve interlayer strength of big area additive manufacturing (BAAM) components
.
Addit. Manuf.
2017
,
14
,
7
12
.
99.
Kishore
,
V.
,
Nycz
,
A.
,
Lindahl
,
J.
,
Duty
,
C.
,
Carnal
,
C.
,
Kunc
,
V.
,
Effect of Infrared Preheating on the Mechanical Properties of Large Format 3D Printed Parts
;
Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA
,
2019
.
100.
Talagani
,
M.
,
DorMohammadi
,
S.
,
Dutton
,
R.
,
Godines
,
C.
,
Baid
,
H.
,
Abdi
,
F.
,
Kunc
,
V.
,
Compton
,
B.
,
Simunovic, S., Duty, C., Numerical simulation of big area additive manufacturing (3D printing) of a full size car
,
Sampe J.
2015
,
51
,
27
36
.
101.
Luo
,
M.
,
Tian
,
X.
,
Zhu
,
W.
,
Li
,
D.
,
Controllable interlayer shear strength and crystallinity of PEEK components by laser-assisted material extrusion
,
J. Mater. Res.
,
2018
,
33
,
1632
.
102.
Ravi
,
A.K.
,
Deshpande
,
A.
,
Hsu
,
K.H.
,
An in-process laser localized pre-deposition heating approach to inter-layer bond strengthening in extrusion based polymer additive manufacturing
,
J. Manuf. Process.
2016
,
24
,
179
185
.
103.
Du
,
J.
,
Wei
,
Z.
,
Wang
,
X.
,
Wang
,
J.
,
Chen
,
Z.
,
An improved fused deposition modelling process for forming large-size thin-walled parts
,
J. Mater. Process. Technol.
,
2016
,
234
,
332
341
.
104.
Sabyrov
,
N.
,
Abilgaziyev
,
A.
,
Ali
,
M.H.
,
Enhancing interlayer bonding strength of FDM 3D printing technology by diode laser-assisted system
,
Int. J. Adv. Manuf. Technol.
,
2020
,
108
,
603
611
.
105.
Fang
,
L.
,
Yan
,
Y.
,
Agarwal
,
O.
,
Yao
,
S.
,
Seppala
,
J.E.
,
Kang
,
S.H.
,
Effects of Environmental Temperature and Humidity on the Geometry and Strength of Polycarbonate Specimens Prepared by Fused Filament Fabrication
,
Materials
,
2020
,
13
,
4414
.
106.
Sun
,
X.
,
Cao
,
L.
,
Ma
,
H.
,
Gao
,
P.
,
Bai
,
Z.
,
Li
,
C.
,
Experimental analysis of high temperature PEEK materials on 3D printing test
, In
Proceedings of the 2017 9th International conference on measuring technology and mechatronics automation (ICMTMA
),
Changsha, China
, 14–15 January 2017,
IEEE
:
Piscataway, NJ, USA
,
2017
, pp.
13
16
.
107.
Spoerk
,
M.
,
Arbeiter
,
F.
,
Raguz
,
I.
,
Weingrill
,
G.
,
Fischinger
,
T.
,
Traxler
,
G.
,
Schuschnigg
,
S.
,
Cardon
,
L.
,
Holzer
,
C.
,
Polypropylene filled with glass spheres in extrusion-based additive manufacturing: Effect of filler size and printing chamber temperature
,
Macromolecular Mater. Eng.
,
2018
,
303
,
1800179
.
108.
Spoerk
,
M.
,
Arbeiter
,
F.
,
Raguz
,
I.
,
Traxler
,
G.
,
Schuschnigg
,
S.
,
Cardon
,
L.
,
Holzer
,
C.
,
The consequences of different printing chamber temperatures in extrusion-based additive manufacturing
. In
Proceedings of the International Conference on Polymers and Moulds Innovations-PMI 2018, Institute of Polymers and Composites
,
University of Minho, Braga, Portugal
, 21 September
2018
.
109.
Costa
,
A.E.
,
da Silva
,
A.F.
,
Carneiro
,
O.S.
,
A study on extruded filament bonding in fused filament fabrication
,
Rapid Prototyp. J.
,
2019
,
25
,
555
565
.
110.
Armillotta
,
A.
,
Bellotti
,
M.
,
Cavallaro
,
M.
,
Warpage of FDM parts: Experimental tests and analytic model. Robot
,
Comput.-Integr., Manuf.
,
2018
,
50
,
140
152
.
111.
Zaldivar
,
R.
,
Mclouth
,
T.
,
Ferrelli
,
G.
,
Patel
,
D.
,
Hopkins
,
A.
,
Witkin
,
D.
,
Effect of initial filament moisture content on the microstructure and mechanical performance of ULTEM®9085 3D printed parts
.,
Addit. Manuf.
2018
,
24
,
457
466
.
112.
Wang
,
X.
,
Zhao
,
L.
,
Fuh
,
J.Y.H.
,
Lee
,
H.P.
,
Effect of porosity on mechanical properties of 3D printed polymers: Experiments and micromechanical modelling based on X-ray computed tomography analysis
,
Polymers
,
2019
,
11
,
1154
.
This content is only available via PDF.
You do not currently have access to this content.