Using local continuous fiber reinforcements in highly stressed component areas, the mechanical properties of injection molded structural parts can be significantly improved while maximizing the potential for lightweight design. The 3D skeleton winding process (3DSW) is a robot-based 3D filament winding approach which enables the winding of thermoplastic impregnated continuous fiber reinforcements, based on commingled yarns (CY), to complex skeleton-like fiber structures. These fiber skeletons (FS) can subsequently be embedded in the final component geometry as local continuous fiber reinforcements using conventional injection molding. The robot-based generation of FS in combination with injection molding means that this manufacturing process can also be applied in the production of highly optimized structural thermoplastic components in larger quantities. This paper presents how the characteristics of the PPS matrix used as thermoplastic filaments in the CY and as overmolding matrix affect the mechanical properties of glass fiber-reinforced tensile loop specimens. Furthermore, the general lightweight potential using wound continuous reinforcements in combination with polyphenylene sulfide (PPS) is demonstrated on a generic 3D structural component.

1.
P.
Eyerer
, Polymer Engineering.
Technologien und Praxis ; mit 155 Tabellen
(
Springer
,
Berlin Heidelberg
,
2008
).
2.
E.
Witten
and
V.
Mathes
,
Der Markt für Glasfaserverstärkte Kunststoffe (GFK
)
2019
.
Marktentwicklungen, Trends, Ausblicke und Herausforderungen
, <https://www.avk-tv.de/files/20191125_avk_marktbericht_2019_final.pdf>.
3.
F.
Henning
and
E.
Moeller
, Handbuch Leichtbau.
Methoden, Werkstoffe, Fertigung
(
Hanser
,
München
,
2011
).
4.
J.
Fleischer
,
R.
Teti
,
G.
Lanza
,
P.
Mativenga
,
H.-C.
Möhring
, and
A.
Caggiano
, “
Composite materials parts manufacturing
,” in
CIRP Annals
67
, pp.
603
626
(
2018
).
5.
G. W.
Ehrenstein
, Faserverbund-Kunststoffe.
Werkstoffe - Verarbeitung - Eigenschaften, 2. völlig überarbeitete Auflage
(
Carl Hanser Verlag GmbH & Co. KG
,
München
,
2006
).
6.
E.
Witten
, ed., Handbuch Faserverbundkunststoffe, Composites,
Grundlagen, Verarbeitung, Anwendungen, 4. Aufl
. (
Springer Vieweg
,
Wiesbaden
,
2014
).
7.
S.
Fachmedien
,
Handbuch Faserverbundkunststoffe
(
Springer Fachmedien
,
Wiesbaden
,
2010
).
8.
L.
Carrino
,
W.
Polini
, and
L.
Sorrentino
, “
Modular structure of a new feed-deposition head for a robotized filament winding cell
,” in
Composites Science and Technology
63
, pp.
2255
2263
(
2003
).
9.
F. A.
Finkenwerder
,
M.
Geistbeck
, and
P.
Middendorf
, “
Study on the validation of ring filament winding methods for unidirectional preform ply manufacturing
,” in
Advanced Manufacturing: Polymer & Composites Science
2
, pp.
103
116
(
2016
).
10.
J.
Fleischer
and
J.
Schaedel
, “
Joining automotive space frame structures by filament winding
,” in
CIRP Journal of Manufacturing Science and Technology
6
, pp.
98
101
(
2013
).
11.
M.
Petru
,
J.
Mlynek
,
T.
Martinec
, and
J.
Broncek
, “
Mathematical Modelling of Fibre Winding Process For Composte Frames
,” in
Communications
, pp.
103
111
(
2016
).
12.
L.
Sorrentino
,
M.
Marchetti
,
C.
Bellini
,
A.
Delfini
, and
F.
Del Sette
, “
Manufacture of high performance isogrid structure by Robotic Filament Winding
,” in
Composite Structures
164
, pp.
43
50
(
2017
).
13.
W.
Polini
and
L.
Sorrentino
, “
Winding Trajectory and Winding Time in Robotized Filament Winding of Asymmetric Shape Parts
,” in
Journal of Composite Materials
39
, pp.
1391
1411
(
2005
).
14.
N.
Minsch
,
F. H.
Herrmann
,
T.
Gereke
,
A.
Nocke
, and
C.
Cherif
, “
Analysis of Filament Winding Processes and Potential Equipment Technologies
,” in
Procedia CIRP
66
, pp.
125
130
(
2017
).
15.
N.
Minsch
,
M.
Müller
,
T.
Gereke
,
A.
Nocke
, and
C.
Cherif
, “
Novel fully automated 3D coreless filament winding technology
,” in
Journal of Composite Materials
52
, pp.
3001
3013
(
2018
).
16.
N.
Minsch
,
M.
Müller
,
T.
Gereke
,
A.
Nocke
, and
C.
Cherif
, “
3D truss structures with coreless 3D filament winding technology
,” in
Journal of Composite Materials
53
, pp.
2077
2089
(
2019
).
17.
D.
Büchler
,
T.
Elsken
,
N.
Glück
,
M.
Sier
, and
S.
Bludszuweit
, “Ultraleichte Raumzelle – Entwicklung von ultraleichten Großstrukturen in Faserverbund-und Hybridbauweise für den Schiffbau,” in
Tagungsband der Staustagung 2011
, edited by
Projektträger
Jülich
(
Forschungszentrum Jülich GmbH
,
2011
), p.
25
.
18.
B.
Beck
,
J.
Haas
, and
H.
Tawfik
, “
Three-Dimensional Fiber Skeleton. Local Continuous Fiber-Reinforcement through 3D Skeleton Winding Technology
,” in
Kunststoffe international
2019
, pp.
114
116
(
2019
).
19.
B.
Beck
,
H.
Tawfik
,
J.
Haas
,
Y.-B.
Park
, and
F.
Henning
in
Advances in Polymer Processing 2020
, edited by
C.
Hopmann
and
R.
Dahlmann
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2020
), p.
150
.
20.
M. P.
Sbanca
and
G. L.
Mogan
, “
Winding of Carbon Wire Composite Structures Using Two Cooperative Industrial Robots
,” in
AMM
762
, pp.
291
298
(
2015
).
21.
T.
Heitz
,
The physical-mechanical properties of structural components made of fiber composite materials in the application of steering columns in cars.
PhD Thesis (
Universitatea "Transilvania" din Brasov
,
Brasov
,
2013
).
22.
L. E.
Rad
,
T.
Heitz
, and
A.
Chiru
, “
New Concept Manufacturing Steering Column Console in Composite Materials
,” in
AMR
1128
, pp.
187
195
(
2015
).
23.
V. V.
Vasiliev
and
A. F.
Razin
, “
Anisogrid composite lattice structures for spacecraft and aircraft applications
,” in
Composite Structures
76
, pp.
182
189
(
2006
).
24.
V. V.
Vasiliev
,
V. A.
Barynin
, and
A. F.
Razin
, “
Anisogrid composite lattice structures – Development and aerospace applications
,” in
Composite Structures
94
, pp.
1117
1127
(
2012
).
25.
L.
Dong
and
H.
Wadley
, “
Shear response of carbon fiber composite octet-truss lattice structures
,” in
Composites Part A: Applied Science and Manufacturing
81
, pp.
182
192
(
2016
).
26.
T.
George
,
V. S.
Deshpande
, and
H.
Wadley
, “
Hybrid carbon fiber composite lattice truss structures
,” in
Composites Part A: Applied Science and Manufacturing
65
, pp.
135
147
(
2014
).
27.
B. K.
Woods
,
I.
Hill
, and
M. I.
Friswell
, “
Ultra-efficient wound composite truss structures
,” in
Composites Part A: Applied Science and Manufacturing
90
, pp.
111
124
(
2016
).
28.
W.
Li
,
F.
Sun
,
P.
Wang
,
H.
Fan
, and
D.
Fang
, “
A novel carbon fiber reinforced lattice truss sandwich cylinder: Fabrication and experiments
,” in
Composites Part A: Applied Science and Manufacturing
81
, pp.
313
322
(
2016
).
29.
W.
Krause
,
M.
Reif
,
M.
Walch
, and
F.
Henning
,
Verfahren und Vorrichtung zur Herstellung eines mit Endlosfasern verstärkten Polymer-Formteils
,
EP 1 568 473 B1
(24 November
2004
).
30.
T.
Huber
,
Einfluss lokaler Endlosfaserverstärkungen auf das Eigenschaftsprofil struktureller Spritzgießbauteile
(
Fraunhofer Verlag
,
Stuttgart
,
2014
).
31.
V.
Heinzle
,
T.
Huber
,
F.
Henning
, and
P.
Elsner
, “
Process development of injection molded parts with wound fiber structures for local reinforcement
,” in (
American Institute of Physics
,
2014
), p.
736
.
32.
Nils
Meyer
,
Process simulation
, <https://www.fast.kit.edu/lbt/index.php>.
33.
H.
Schürmann
,
Konstruieren mit Faser-Kunststoff-Verbunden
(
Springer-Verlag Berlin Heidelberg
,
Berlin, Heidelberg
,
2005
).
This content is only available via PDF.
You do not currently have access to this content.