In this article, we apply cubature formulas based on number-theoretic methods for approximate solution of the system of multidimensional integral equations , and we estimate the error of the approximate solution, where
Topics
Integral equations
REFERENCES
1.
2.
3.
A. F.
Verlen
and A. S.
Sizikova
, “Integral equations: Methods, algorithms, programs. reference manual
.” -Kiev: Science thought.
12
, 543
p. (1986
.), doi:.4.
N. M.
Korobov
, Approximate calculation of multiple integrals using number theory methods
(Nauka, DAN SSSR, -M.: 115
, No. 6
, 1957
,) pp. P.1062
–1065
.5.
N. M.
Korobov
, “Application of number-theoretic grids in integral equations and interpolation formulas
,” Tr. Matem. Inst. Academy of Sciences of the USSR
, - M.: 60
, S. 195
–210
. (1961
,).6.
N. M.
Korobov
, On the calculation of optimal coefficients
(DAN SSSR. 1982. Volume 267
., Stockholm, No. 2
. 1959
).7.
N. M.
Korobov
, “Trigometric sums and their applications.
” -M.:.8.
M. I.
Israilov
and K. M.
Shadimetov
, “Weighted optimal quadrature formulas for singular integrals of Cauchy type
,” DAN Uz SSR.
8
., 10
–11
. (1991
).9.
M. I.
Israilov
and K. M.
Shadimetov
, “Optimal coefficients of weighted quadrature formulas for singular integrals of the cauchy type
,” DAN Uz SSR.
11
, 7
–9
. (1991
.).10.
M. I.
Israilov
and I. M.
Abiraev
, “Approximate solution of the system of Fredholm integral equations of the second kind using number-theoretic grids
,” Uzbek Mathematical Journal.
2
, 43
–51
(1993
).11.
A. D.
Polyanina
and A. V.
Manzhirov
, “Handbook of integral equations
,” Physics and Mathematics
24
(2003
).12.
E. V.
Sumin
, V. B.
Sherstyukov
, and O. V.
Sherstyukova
, “Fredholm and volterra integral equations, boundary value problems and methods for their solution.” Teaching aid. Moscow
, 96
(2016
.).13.
A.
Avyt
, “Approximate calculation of the Volterra-Stieltes linear integral equation of the second kind by the generalized trapezoid method
.” Young scientist.
6
(65
), 3
–9
. (2014
).14.
A. A.
Abdurashidov
, “Aptoximate solution of linear and nonlinear Volterra integral equations by the method of variational iterations
,” Young scientist
6
(140
), 8
–12
(2017
).
This content is only available via PDF.
© 2024 AIP Publishing LLC.
2024
AIP Publishing LLC
You do not currently have access to this content.