Corrosion or oxidation attacks on carbon steel pipelines can be prevented by producing aluminum slurry coating. Observations of the optimal slurry composition containing aluminum scrap powder as a load agent in the binder solution with a certain mass ratio were studied to obtain good quality aluminum coating on ST37 carbon steel. Several variation compositions of Al content and binder ratio were evaluated by viscosity test and optical microscope (OM), then showed a slurry coating of 43 wt.% Al content and binder ratio of 1:40 possessed good consistency, stable shear-thinning behavior, and the lowest surface roughness. Therefore, further analysis of microstructure was performed on this sample. A surface morphological structure showed moderate roughness with some particle characteristics observed on the slurry coating sample. A cross-sectional structure showed the presence of an internal oxide layer with a thickness of about 129 µm. In addition, a protective oxide Al2O3 layer with a thickness of about 173 µm was observed on the top of the internal oxide layer. Phase identification by XRD analysis showed the formation of Fe3O4 as the internal oxide layer and α-Al2O3 as the protective oxide layer with a small amount of unstable Al2O3, α-Fe, and Fe3Si phases.

1.
M. G.
Mohamed
,
N. M.
Ahmed
,
W. S.
Mohamed
, and
M. R.
Mabrouk
,
Prog. Org. Coatings
149
,
105941
(
2020
).
2.
F. O.
Kolawole
,
S. K.
Kolawole
,
J. O.
Agunsoye
,
J. A.
Adebisi
,
S.A.
Bello
, and
S.B.
Hassan
,
J. Mater. Environ. Sci.
9
,
2397
2410
(
2018
).
3.
B.
Rannou
, “
Slurry Coatings from Aluminium Microparticles on Ni-Based Superalloys for High-Temperature Oxidation Protection
”, Ph.D. thesis,
Universite ´ de La Rochelle
,
2013
.
4.
J.
Huang
,
J.
Lu
,
X.
Zhang
,
Z.
Yang
,
Y.
Zhou
,
Z.
Yang
,
Y.
Dang
, and
Y.
Yuan
,
Metall Mater Trans A Phys Metall Mater Sci.
50
,
3776
(
2019
).
5.
M.
Amirjan
and
H.
Khorsand
,
Powder Technolology
254
,
12
21
(
2014
).
6.
R. M.
Triani
,
L. F. D. A.
Gomes
,
R. J. T.
Aureliano
,
A. L.
Neto
,
G. E.
Totten
, and
L. C.
Casteletti
,
J. Mater. Eng. Perform.
29
,
3568
3574
(
2020
).
7.
A. E.
Kochmańska
,
Adv. Mater. Sci. Eng.
2018
,
1
13
(
2018
).
8.
M. D.
Nguyen
,
J. W.
Bang
,
Y. H.
Kim
,
A. S.
Bin
,
K. H.
Hwang
,
V. H.
Pham
, and
W. T.
Kwon
,
Ceram. Int.
44
,
8306
8313
(
2018
).
9.
J. T.
Bauer
,
X.
Montero
, and
M.C.
Galetz
,
Surf. Coat. Technol.
381
,
125140
(
2020
).
10.
A. E.
Kochmańska
,
J. Archive. Mater. Manuf. Eng.
85
,
49
55
(
2017
).
11.
C.
Boulesteix
and
F.
Pedraza
,
Surf. Coatings Technol.
339
,
27
36
(
2018
).
12.
A.
Jokar
,
F.
Ghadami
,
N.
Azimzadeh
, and
D.S.
Doolabi
,
SSRN Electron. J.
3967530
(
2021
).
13.
T.
Kepa
,
F.
Pedraza
, and
F.
Rouillard
,
Surf. Coat. Technol.
397
,
126011
(
2020
).
14.
S.
Capuzzi
and
G.
Timelli
,
Metals
8
,
249
(
2018
).
15.
N. R.
Peela
,
A.
Mubayi
, and
D.
Kunzru
,
Catal. Today
147
,
S17
S23
(
2009
).
16.
J.
Lu
,
Y.
Dang
,
J.
Huang
,
Y.
Zhou
,
Z.
Yang
,
J.
Yan
,
Y.
Yuan
, and
Y.
Gu
,
Surf. Coat. Technol.
370
,
97
105
(
2019
).
17.
A. J.
Dan'ko
,
M.A.
Rom
,
N.S.
Sidelnikova
,
S. V.
Nizhankovskiy
,
A. T.
Budnikov
,
L. A.
Grin
, and
K. S. O.
Kaltaev
,
Crystallogr. Reports
53
,
1112
1118
(
2008
).
18.
B.
Rannou
,
F.
Velasco
,
S.
Guzmán
,
V.
Kolarik
, and
F.
Pedraza
,
Mater. Chem. Phys.
134
,
360
365
(
2012
).
This content is only available via PDF.
You do not currently have access to this content.