Aluminum oxide was deposited on the substrate using an Nd: YAG laser to prepare aluminum oxide nanocoating. The analysis tests showed that the nanocoating is polycrystalline and inhomogeneous distribution. The average surface roughness of the nanocoating increased from 1.33 nm to 3.7 nm with increased laser energy, and the number of pulses from 700 mJ and 100 pulses to 900 mJ and 300 pulses and a higher growth rate. UV-Visible Spectrophotometer was shown that sharp absorption in the ultraviolet (UV) region and high transmittance in the spectral region. The energy gap decreased from 4.1 eV to 4 even with the increased thickness of nanocoating from 56.4 nm to 176 nm. The nanocoating hardness test was carried out using the nanoindentation technique. The results showed that the hardness decreased from 33.83 GPa to 11.84 GPa with increased laser energy and a pulse from 700 mJ and 100 pulses to 900 mJ and 300 pulses due to internal defects caused by the increase in the thickness of the coating.

1.
G.
Balakrishnan
,
P.
Kuppusami
,
S.T.
Sundari
,
R.
Thirumurugesan
,
V.
Ganesan
,
E.
Mohandas
, and
D.
Sastikumar
,
Thin Solid Films
518
,
3898
(
2010
).
2.
C.
Yin
,
M.
Zhu
,
T.
Zeng
,
J.
Sun
,
R.
Zhang
,
J.
Zhao
,
L.
Wang
, and
J.
Shao
,
Opt. Mater. Express
11
,
875
(
2021
).
3.
J.
Benick
,
A.
Richter
,
M.
Hermle
, and
S.W.
Glunz
,
Phys. Status Solidi - Rapid Res. Lett.
3
,
233
(
2009
).
4.
D.A.
Mohammed
,
A.
Kadhim
, and
M.A.
Fakhri
,
AIP Conf. Proc.
2045
,
0
(
2018
).
5.
M.A.
Fakhri
,
S.F.H.
Alhasan
,
N.H.
Numan
,
J.M.
Taha
, and
F.G.
Khalid
,
AIP Conf. Proc.
2213
, (
2020
).
6.
F.M.O. Hayder A.
Sallal
a,
Alla A.
Abdul-Hamead
b,
Eng. Technol. J.
3
,
2
(
2020
).
7.
R.
Zazpe
,
J.
Prikryl
,
V.
Gärtnerova
,
K.
Nechvilova
,
L.
Benes
,
L.
Strizik
,
A.
Jäger
,
M.
Bosund
,
H.
Sopha
, and
J.M.
Macak
,
Langmuir
33
,
3208
(
2017
).
8.
K.
Abdulkareem
,
S.
Kadhim
, and
S.
Ali
,
Eng. Technol. J.
40
,
334
(
2022
).
9.
Kadhim
M. J.
,
Sukkar
K. A.
,
Abbas
A. S.
, and
Obaeed
N. H.
,
Eng. Technol. J.
35
,
3
(
2017
).
10.
A.Jw.J.T.
Kadhim
,
Eng. Technol. J.
34
,
2016
(
2016
).
11.
Y.Z.
Dawood
,
S.M.
Kadhim
, and
A.Z.
Mohammed
,
Eng. Technol. J.
5
,
9
(
2015
).
12.
J.
Kongsakul
,
N.
Witit-anun
,
S.
Chaiyakun
, and
P.
Kaewtrakulpong
,
Dept, Physics, Burapa Univ.
(
2005
).
13.
I.L.
Quintás
, (
2017
).
14.
C.
Outline
,
Methods for Assessing Surface Cleanliness
(
2019
).
15.
N.J.
Mohammed
and
H.A.
Ahmed
,
29
, (
2018
).
16.
B.
Ealet
,
M.H.
Elyakhloufi
,
E.
Gillet
, and
M.
Ricci
,
Thin Solid Films
250
,
92
(
1994
).
17.
S.M.
Pawar
,
A. V.
Moholkar
,
I.K.
Kim
,
S.W.
Shin
,
J.H.
Moon
,
J.I.
Rhee
, and
J.H.
Kim
,
Curr. Appl. Phys.
10
,
565
(
2010
).
18.
S.
Nagar
, (
2012
).
19.
Z.
Ghorannevis
,
M.T.
Hosseinnejad
,
M.
Habibi
, and
P.
Golmahdi
,
J. Theor. Appl. Phys.
9
,
33
(
2015
).
20.
H.
Kim
,
J.S.
Horwitz
,
G.
Kushto
,
A.
Piqué
,
Z.H.
Kafafi
,
C.M.
Gilmore
, and
D.B.
Chrisey
,
J. Appl. Phys.
88
,
6021
(
2000
).
21.
K.A.
Aadim
,
N.K.
Abbas
, and
A.T.
Dahham
,
Iraqi J. Sci.
59
,
1567
(
2018
).
22.
M.
Ben Rabeh
,
N.
Khedmi
,
M.A.
Fodha
, and
M.
Kanzari
,
Energy Procedia
44
,
52
(
2014
).
23.
A.
Mann
,
Surfaces Interfaces Biomater.
225
(
2005
).
24.
E.O.
Filatova
and
A.S.
Konashuk
,
J. Phys. Chem. C
119
,
20755
(
2015
).
25.
I.A.
Kariper
,
Diam. Carbon Compos. Nanocomposites
1
(
2016
).
This content is only available via PDF.
You do not currently have access to this content.