One of the results of human interaction with the environment is emergence of DHF. Changes in the form and function of the environment are not a direct cause of disease, but there are other factors that greatly influence such as community behavior and the availability of disease habitats. DHF continues to be a public health problem in Lubuk Tarok District. Starting from 2014-2020 there is always an increase in cases. This study was to see the spatial distribution of dengue transmission risk in Lubuk Tarok District, Sijunjung Regency. The research design was observational and survey, the study was conducted in 3 Sub-districts in Lubuk Tarok District from Jan-Oct 2020. The sampling technique in this study used non-probabilistic techniques, namely purposive sampling with a sample size of 300 houses. Univariate data analysis and spatial analysis (Overlay) with spatial applications. Based on the research results, it can be seen that the spatial distribution of the risk of dengue infection in Lubuk Tarok District, Sijunjung Regency is the highest in Lubuk Tarok Sub-District. The final result of this study will produce a spatial-based risk map for the risk of DHF transmission so that it will provide valuable information to examine the relationship between disease and environmental variables. Thus, environmental management can be carried out to produce sustainable effects from an environmentally based disease management program.

1.
F.
Hasna
, “
Dinamika Lingkungan Faktor yang Mempengaruhi Kejadian Demam Berdarah Dengue (DBD) di Wilayah Kerja Puskesmas Cilacap Selatan I dan Puskesmas Cilacap Tengah II
,” pp.
2
3
,
2020
.
2.
M.
Marwanty
and
T. Y. Miko
Wahyono
, “
Faktor Lingkungan Rumah dan Kejadian Demam Berdarah Dengue di Kota Palopo 2016
,”
J. Epidemiol. Kesehat. Indones.
, vol.
2
, no.
1
, pp.
19
26
,
2019
, doi: .
3.
R. A.
Adnan
et al, “
Implication of Climatic Factors on Dengue Fever in Urban Area : Case Study in 2012-2016
,”
EvironmentAsia
, vol.
13
, no.
3
,
2020
, doi: .
4.
Kementerian Kesehatan Republik Indonesia
, “
Data dan Informasi kesehatan indonesia 2019
,”
Profil Kesehat. Indones.
, vol.
8
, no.
9
, pp.
1
213
,
2020
.
5.
Puskesmas Lubuk Tarok Laporan Rekapitulasi Tahunan Penyakit Menular DBD Lubuk Tarok
.”.
6.
U.
Langkulsen
,
kamol Sakolnakhon na
promsakha
, and
N.
James
, “
Climate change and dengue risk in central region of Thailand
,”
Int. J. Environ. Health Res.
, vol.
30
, no.
3
, pp.
327
335
,
2020
.
7.
Kemenkes
, “Demam Berdarah Dengue,”
Bul. Jendela Epidemiol.
, vol.
2
, p.
48
,
2010
.
8.
A.
Dinata
,
P. W.
Dhewantara
,
T.
Beberapa
,
A.
Tenggara
, and
M.
Timur
, “
Karakteristik Lingkungan Fisik, Biologi, Dan Sosial Di Daerah Endemis Dbd Kota Banjar Tahun 2011
,”
J. Ekol. Kesehat.
, vol.
11
, no.
4 Des
, pp.
315
326
,
2015
, doi: .
9.
A.
Onasis
,
E.
Barlian
, and
A.
Razak
, “
Studies breeding places of Aedes aegypti and Aedes albopictus in dengue endemic Padang area
,”
IOP Conf. Ser. Earth Environ. Sci.
, vol.
314
, no.
1
, pp.
2
5
,
2019
, doi: .
10.
T. H.
Wen
et al, “
Spatial-temporal patterns of dengue in areas at risk of dengue hemorrhagic fever in Kaohsiung, Taiwan, 2002
,”
Int. J. Infect. Dis.
, vol.
14
, no.
4
, pp.
334
343
,
2010
, doi: .
11.
P.
Jeefoo
, “
Spatial Temporal Dynamics and Risk Zonation of Dengue Fever, Dengue Hemorrhagic Fever, and Dengue Shock Syndrome in Thailand
,” no. September, pp.
58
68
,
2012
, doi: .
12.
P.
Gong
,
B.
Xu
, and
S.
Liang
, “
Remote sensing and geographic information systems in the spatial temporal dynamics modeling of infectious diseases
,”
Sci. China, Ser. C Life Sci.
, vol.
49
, no.
6
, pp.
573
582
,
2006
, doi: .
13.
S.
Brugueras
,
B.
Fern
,
J.
Figuerola
,
T. M.
Porro
,
C.
Rius
, and
A.
Larrauri
, “
Environmental drivers, climate change and emergent diseases transmitted by mosquitoes and their vectors in southern Europe : A systematic review
,”
Environ. Res.
, vol.
191
,
2020
, doi: .
14.
S. N.
Surendran
et al, “
Aedes larval bionomics and implications for dengue control in the paradigmatic Jaffna peninsula, northern Sri Lanka
,”
Parasit. Vectors
, pp.
1
14
,
2021
, doi: .
15.
M. U.
Mukhtar
,
Q.
Han
,
C.
Liao
,
F.
Haq
,
A.
Arslan
, and
A.
Bhatti
, “
Seasonal Distribution and Container Preference Ratio of the Dengue Fever Vector ( Aedes aegypti, Diptera : Culicidae ) in Rawalpindi, Pakistan
,”
J. Med. Entomol.
, vol.
55
, no. February, pp.
1011
1015
,
2018
, doi: .
16.
Y.
Wu
and
C.
Huang
, “Climate Change and Vector-Borne Diseases in China : A Review of Evidence and Implications for Risk Management,”
Biology (Basel).
, pp.
1
18
,
2022
.
17.
S.
Rahman
et al, “
Mapping the spatial distribution of the dengue vector Aedes aegypti and predicting its abundance in northeastern Thailand using machine-learning approach
,”
One Heal.
, vol.
13
, no. December,
2021
, doi: .
18.
F. A.
Siregar
and
T.
Makmur
, “
Survey on aedes mosquito density and pattern distribution of aedes aegypti and aedes albopictus in high and low incidence districts in north sumatera province
,”
IOP Conf. Ser. Earth Environ. Sci.
, vol.
130
, no.
1
,
2018
, doi: .
19.
A. D.
Ligsay
et al, “
Assessing Entomological and Epidemiological Efficacy of Pyriproxyfen-Treated Ovitraps in the Reduction of Aedes Species : A Quasi-Experiment on Dengue Infection Using Saliva Samples
,”
Int. J. Environ. Res. Public Heal.
, vol. Int. J. En,
2022
, doi: .
20.
X.
Liu
,
Y.
Tan
, and
B.
Zheng
, “
Dynamic Behavior of an Interactive Mosquito Model under Stochastic Interference
,”
Mathematics
, pp.
1
19
,
2022
, doi: .
21.
V. R.
Bajwala
, “
Epidemiology of dengue and related entomological and environmental factors - Surat City, Gujarat, India 2011-2016
,”
Int. J. Infect. Dis.
, vol.
79
, no.
2019
, p.
148
,
2019
, doi: .
22.
G. G.
Marten
,
X.
Caballero
,
A.
Larios
, and
H.
Benda
, “
Proof of concept for eliminating Aedes aegypti production by means of integrated control including turtles, copepods, tilapia, larvicides, and community participation in Monte Verde, Honduras
,”
Acta Trop.
, vol.
227
, no. July 2021,
2022
, doi: .
23.
R.
Ahmad
et al, “Factors determining dengue outbreak in Malaysia,”
PLoS One
, pp.
1
13
,
2018
.
24.
K.
Liu
et al, “
Facilitating fine - grained intra - urban dengue forecasting by integrating urban environments measured from street - view images
,”
Infect. Dis. Poverty
, pp.
1
17
,
2021
, doi: .
25.
F.
Makrufardi
,
P.
Surya
, and
E.
Larene
, “
Factors associated with dengue prevention behaviour in riverbank area : A cross-sectional study
,”
Ann. Med. Surg.
, vol.
66
, no. June, p.
102450
,
2021
, doi: .
26.
W.
Wang
et al, “
Dengue hemorrhagic fever e A systemic literature review of current perspectives on pathogenesis, prevention and control
,”
J. Microbiol. Immunol. Infect.
, vol.
53
, no.
6
, pp.
963
978
,
2020
, doi: .
27.
R.
Wieland
,
K.
Kuhls
,
H. H. K.
Lentz
,
F.
Conraths
,
H.
Kampen
, and
D.
Werner
, “
Combined climate and regional mosquito habitat model based on machine learning
,”
Ecol. Modell.
, vol.
452
, no. October 2020, p.
109594
,
2021
, doi: .
28.
S.
Thammapalo
,
V.
Chongsuvivatwong
,
A.
Geater
, and
M.
Dueravee
, “
Environmental factors and incidence of dengue fever and dengue haemorrhagic fever in an urban area, Southern Thailand
,”
Epidemiol. Infect.
, vol.
136
, no.
1
, pp.
135
143
,
2008
, doi: .
29.
S.
Swain
,
M.
Bhatt
,
D.
Biswal
,
S.
Pati
, and
R. J.
Soares
, “
Journal of Infection and Public Health Risk factors for dengue outbreaks in Odisha, India : A case-control study
,”
J. Infect. Public Health
, vol.
13
, no.
4
, pp.
625
631
,
2020
, doi: .
30.
S.
Osama
M.E,
D.
Lu
,
C. S.
Chong
, and
L.
Ng
, “
Patterns of Urban Housing Shape Dengue Distribution in Singapore at Neighborhood and Country Scales
,”
GeoHealth
, pp.
54
67
,
2019
, doi: .
31.
D. O.
Fuller
,
A.
Troyo
, and
J. C.
Beier
, “
El Nĩo Southern Oscillation and vegetation dynamics as predictors of dengue fever cases in Costa Rica
,”
Environ. Res. Lett.
, vol.
4
, no.
1
,
2009
, doi: .
32.
A.
Ruliansyah
,
Y.
Yuliasih
,
W.
Ridwan
, and
A. J.
Kusnandar
, “
Analisis Spasial Sebaran Demam Berdarah Dengue di Kota Tasikmalaya Tahun 2011 – 2015
,” vol.
9
, no. April, pp.
85
90
,
2017
.
33.
B. K.
Penduduk
, “
Unnes Journal of Public Health
,” vol.
5
, no.
1
,
2016
.
34.
L. I.
Zambrano
et al, “
Estimating and mapping the incidence of dengue and chikungunya in Honduras during 2015 using Geographic Information Systems (GIS
),”
J. Infect. Public Health
, vol.
10
, no.
4
, pp.
446
456
,
2017
, doi: .
35.
Riva
,
Siswanto
, and
Subirman
, “
Spatial Distribution of Dengue Haemorrhagic Fever ( DHF ) Vulnerability Level Based on Population Density, Rainfall, Drainage Condition, Natural Water Body, and Vector Control Program in Tanjung Redeb Sub-District, District of
,”
IOP Conf. Ser. Earth Environ. Sci.
, vol.
187
, pp.
1
11
,
2018
, doi: doi :.
36.
S.
Benkimoun
,
C.
Atyame
,
M.
Haramboure
,
P.
Degenne
,
H.
Thebault
, and
A.
Tran
, “
Results in Physics Dynamic mapping of dengue basic reproduction number
,”
Results in Physic
, vol.
29
,
2021
, doi: .
37.
S.
Mala
and
M. K.
Jat
, “
The Egyptian Journal of Remote Sensing and Space Sciences Geographic information system based spatio-temporal dengue fever cluster analysis and mapping q
,”
Egypt. J. Remote Sens. Sp. Sci.
, vol.
22
, no.
3
, pp.
297
304
,
2019
, doi: .
38.
Y.
Yue
et al, “
International Journal of Infectious Diseases Spatial analysis of dengue fever and exploration of its environmental and socio-economic risk factors using ordinary least squares : A case study in fi ve districts of Guangzhou City
,”
Int. J. Infect. Dis.
, vol.
75
, pp.
39
48
,
2018
, doi: .
39.
L. I.
Zambrano
et al, “
Spatial distribution of dengue in Honduras during 2016 – 2019 using a geographic information systems ( GIS ) – Dengue epidemic implications for public health and travel medicine
,”
Travel Med. Infect. Dis.
, vol.
32
, no. October, p.
101517
,
2019
, doi: .
40.
F.
Dzul-manzanilla
et al, “
Articles Identifying urban hotspots of dengue, chikungunya, and Zika transmission in Mexico to support risk stratification efforts : a spatial analysis
,”
Lancet Planet. Heal.
, vol.
5
, no.
5
, pp.
e277
e285
,
2020
, doi: .
41.
S.
Rao
,
R.
Mopuri
, and
S.
Naish
, “
Spatial distribution and cluster analysis of dengue using self organizing maps in Andhra Pradesh, India, 2011 – 2013
,”
Parasite Epidemiol. Control
, vol.
3
, no.
1
, pp.
52
61
,
2018
, doi: .
42.
S.
Yip
,
N.
Che
,
N.
Izzah
,
D.
He
, and
S. K.
Sahu
, “
Climate Risk Management Spatio-temporal detection for dengue outbreaks in the Central Region of Malaysia using climatic drivers at mesoscale and synoptic scale
,”
Clim. Risk Manag.
, vol.
36
, no. November 2021, p.
100429
,
2022
, doi: .
43.
S.
Benkimoun
et al, “
Dynamic mapping of dengue basic reproduction number
,”
Results Phys.
, vol.
29
,
2021
, doi: .
44.
S. A.
Thamrin
,
A. K.
Jaya
, and
K.
Mengersen
, “
Bayesian spatial survival modelling for dengue fever in Makassar, Indonesia ଝ
,”
Gac Sanit
, vol.
35
, pp.
S59
S63
,
2021
, doi: .
This content is only available via PDF.
You do not currently have access to this content.