Trichoderma are well known as biological control agents to inhibit various plant pathogens. These fungi also promote growth on cultivated plants by producing plant hormones. A study was conducted to investigate effects of Trichoderma asperellum on growth performance and phenolic content in soybean. Ten isolates of T. asperellum were applied on soybean seeds. The numbers of normal seedlings were not influenced by eight isolates of T. asperellum. Six isolates triggered plant height (14.5–15.5 cm) compared to that of control (13.2 cm). Root length and fresh root weight as well as plant biomass weight were also influenced by T. asperellum applications. Only fresh shoot weight parameter was not influenced by these treatments. Four T. asperellum isolates (T.a8, T.a3, T.a5, T.a4) increased root length from 24.2% to 37.4%. Fresh root weight also increased on T. asperellum T.a8, T.a3, T.a5, T.a4 treatments. Fresh biomass increased about one third (2.2 – 2.4 g) on soybean treated with T. asperellum T.a9, T.a7, T.a8, T.a1 compared to that of control (1.7 g). Significantincrease of total phenolic content were observed in two isolates of T. asperellum T.a1 (16.7%) and T.a6 (20.0%). The isolates of T. asperellum T.a4 and T.a8 supported plant height, root length and increased fresh root weight, plant biomass, and phenolic content. Therefore, these isolates were promising to be used as bio-stimulant on soybean.

1.
Mukhopadhyay
R.
and
Kumar
D.
2020
Egypt. J. Biol. Pest Control
30
(
1
)
1
8
2.
Inayati
A.
,
Sulistyowati
L.
,
Aini
L. Q.
and
Yusnawan
E.
2019
Antifungal activity of volatile organic compounds from
Trichoderma virens AIP Conf. Proc.
AIP Publishing
3.
Rajani
P.
,
Rajasekaran
C.
,
Vasanthakumari
M.
,
Olsson
S. B.
,
Ravikanth
G.
and
Shaanker
R. U.
2021
Microbiol. Res.
242
126595
4.
Hidangmayum
A.
and
Dwivedi
P.
2018
J. Pharmacogn. Phytochem.
7
758
766
5.
Yusnawan
E.
,
Taufiq
A.
,
Wijanarko
A.
,
Susilowati
D. N.
,
Praptana
R. H.
,
Chandra-Hioe
M. V.
et al.
2021
Sustainability
13
(
23
)
13226
6.
Alfiky
A.
and
Weisskopf
L.
2021
J. Fungi
7
(
1
)
61
7.
Guzmán-Guzmán
P.
,
Porras-Troncoso
M. D.
,
Olmedo-Monfil
V.
and
Herrera-Estrella
A.
2019
Phytopathol.
109
(
1
)
6
16
8.
Singh
V.
,
Upadhyay
R.
,
Sarma
B.
and
Singh
H.
2016
Int. J. Agric. Environ. Biotechnol.
9
(
3
)
361
365
9.
Yusnawan
E.
,
Inayati
A.
and
Baliadi
Y.
2019
Effect of soybean seed treatment with Trichoderma virens on its growth and total phenolic content AIP Conf. Proc
:
AIP Publishing
10.
Yusnawan
E.
2016
Biodiv.
17
(
2
)
704
710
11.
Ata
A.
,
El-Samman
M.
,
Moursy
M. A.
and
Mostafa
M.
2008
Egypt. J. Phytopathol.
36
113
132
12.
Anjum
Z.
,
Hayat
S.
,
Ghazanfar
M. U.
,
Ahmad
S.
,
Adnan
M.
and
Hussian
I.
2020
Int. J. Botany Stud.
5
(
2
)
65
68
13.
Chen
D.
,
Hou
Q.
,
Jia
L.
and
Sun
K.
2021
Agronomy
11
(
4
)
726
14.
Kumar
S.
,
Shukla
V.
,
Dubey
M. K.
and
Upadhyay
R. S.
2021
J. Basic Microbiol.
61
(
10
)
910
922
15.
Formisano
L.
,
Miras-Moreno
B.
,
Ciriello
M.
,
El-Nakhel
C.
,
Corrado
G.
,
Lucini
L.
, et al.
2021
Agronomy
11
(
6
)
1205
16.
Illescas
M.
,
Pedrero-Méndez
A.
,
Pitorini-Bovolini
M.
,
Hermosa
R.
and
Monte
E.
2021
Pathogens
10
(
8
)
991
17.
Abdullah
N. S.
,
Doni
F.
,
Mispan
M. S.
,
Saiman
M. Z.
,
Yusuf
Y. M.
,
Oke
M. A.
, et al.
2021
Agronomy
11
(
12
)
2559
18.
Sood
M.
,
Kapoor
D.
,
Kumar
V.
,
Sheteiwy
M. S.
,
Ramakrishnan
M.
,
Landi
M.
, et al.
2020
Plants
9
(
6
)
762
19.
Poveda
J.
,
Eugui
D.
and
Abril-Urias
P.
2020
, Could Trichoderma be a plant pathogen? Successful root colonization, in
Trichoderma
Springer
35
59
20.
Jafarbeigi
F.
,
Samih
M.
,
Alaei
H.
and
Shirani
H.
2020
Neotrop. Entomol.
49
(
3
)
456
467
21.
Chalker-Scott
L.
and
Fuchigami
L.
2018
The role of phenolic compounds in plant stress responses, in
Low temperature stress physiology in crops
CRC press
.
67
80
.
22.
Kuvalekar
A.
,
Redkar
A.
,
Gandhe
K.
and
Harsulkar
A.
2011
N. Z. J. Bot.
49
(
3
)
351
This content is only available via PDF.
You do not currently have access to this content.