The issue of predicting the reliability and service life of forestry tractors, their individual components and assemblies is an urgent task at the design stage and the operation of this equipment. Considering that at the moment in the forestry industry the largest number of forestry tractors carry out transport operations, breakdowns are largely associated with transmission elements. The difficult operating conditions of forestry tractors and the cyclical load changes lead to an increase in the dynamic coefficient, which significantly affects the durability of transmission parts. As a result of the study of literary sources it has been established that the use of spectral densities has become widespread in the analysis of reliability as separate elements of power transmission and the transmission as a whole. The study presents a methodology, describes the expressions and their interpretation, as well as simplifications and derivations of final expressions for determining the spectral densities of the transmission elements of wheeled forestry tractors, which can be used when performing calculations to determine the durability and loading of transmission parts, as well as planning and developing methods for accelerated, including bench tests of transmissions of wheeled forestry tractors and their individual components and assemblies.

1.
G. M.
Anisimov
,
Operational efficiency of skidders
(
Forest industry
,
Moscow
,
1990
), p.
208
.
2.
N. V.
Babakov
,
Theory of vibrations
(
Nauka
,
Moscow
,
1968
), p.
560
.
3.
A. V.
Zhukov
and
I. I.
Leonovich
,
Oscillations of timber transport machines
(
BGU Publishing House
,
Minsk
,
1973
), p.
240
.
4.
V. I.
Kucheryavy
and
V. D.
Charkov
,
Lesnoy zhurnal
,
4
,
56
59
(
1989
).
5.
G. S.
Maslov
,
Calculations of vibrations of shafts
(
Mashinostroenie
,
Moscow
,
1968
), p.
272
.
6.
A. V.
Churakov
,
V. A.
Sokolova
,
S. A.
Voinash
,
R. R.
Zagidullin
,
L. S.
Sabitov
,
A. S.
Krivonogova
and
A. A.
Ivanov
,
Izvestiya TulGU. Technical science
,
10
,
420
424
(
2022
).
7.
S.-M.
Baek
,
S.-Y.
Baek
,
H.-H.
Jeon
,
W.-S.
Kim
,
Y.-S.
Kim
,
N.-H.
Kim
,
T.
Sim
,
H.
Kim
and
Y.-J
Kim
,
Agriculture
,
12
,
123
(
2022
).
8.
C.
Wen
,
B.
Xie
,
Z.
Li
,
Y.
Yin
,
X.
Zhao
and
Z.
Song
,
Biosyst. Eng.
,
200
,
73
88
(
2020
).
9.
M. M.
Topaça
,
H.
Günalb
and
N. S.
Kuralaya
,
Engineering Failure Analysis
,
16
,
5
,
1474
1482
(
2009
).
10.
Y.
Shao
,
J.
Liu
and
C. K.
Mechefske
,
Failure Analysis
,
18
,
3
,
1049
1057
(
2011
).
11.
G. K.
Nanaware
and
M. J.
Pable
,
Engineering Failure Analysis
,
10
,
6
,
719
724
(
2003
).
12.
A.
Lanciotti
and
L.
Lazzeri
,
International Journal of Fatigue
,
14
,
5
,
319
324
(
1992
).
13.
K.
Biernacki
,
Int. J. Precis. Eng. Manuf.
,
16
,
537
546
(
2015
).
14.
J.-G.
Kim
,
J.-S.
Park
,
K.-J.
Choi
,
D.-K.
Lee
,
M.-S.
Shin
,
J.-Y.
Oh
and
J.-S.
Nam
,
Korean Soc. Manuf. Process Eng.
,
19
,
42
48
(
2020
).
15.
W. S.
Kim
,
Y. J.
Kim
,
Y. S.
Kim
,
S. U.
Park
,
K. H.
Lee
,
D. H.
Hong
and
C. H.
Choi
,
J. Terramech
,
94
,
13
22
(
2021
).
16.
Francis
Castanié
,
Spectral analysis: parametric and non-parametric digital methods
(
Antony Rowe Ltd
,
Great Britain, Chippenham, Wiltshire
,
2006
), р.
263
.
17.
H.
Bayrakceken
,
S.
Tasgetiren
and
I.
Yavuz
,
Engineering Failure Analysis
,
14
,
716
724
(
2007
).
18.
Y.
Ozmen
,
Technol Res: EJMT
,
1
,
7
31
(
2004
).
19.
M. A.
Lagunas
and
A.
Gasull
,
IEEE Trans. Acoust. Speech Signal Process
,
32
,
170
172
(
1984
).
20.
H.
Bayrakceken
,
Eng. Fail Anal
.
13
,
8
,
1422
1428
(
2006
). Spectral analysis: parametric and non-parametric digital methods, edited by
Francis
Castanié.
1st
ed. (
Antony Rowe Ltd
,
Great Britain, Chippenham, Wiltshire
,
2006
), р.
263
.
This content is only available via PDF.
You do not currently have access to this content.